

Norwegian Meteorological Institute met.no

Overview over products and model developments at MSC/W for TFMM in support of the revision of the Gothenburg protocol

Michael Schulz

Zagreb, TFMM 6 May 2013

- Model Status and Training Course
- Model Simulations for Gothenburg Protocol and TSAP
- Model Data on Recent Trend
- 10 year Multi Component Trend Evaluation
- Status Report Plans

EMEP MSC-W Model Training Course 24-26 April 2013, Oslo, Norway

 25 Participants : UK, Hungary, Belgium, Poland, Norway, Estonia, Croatia, Austria, JRC/Italy (no visa or travel permit: Congo, France)

 Presentations on Aerosol and Chemistry, Emissions, Computer requirements, Grid flexibility, Nesting, IFS Meteorology, WRF Coupling, Plume rise, Outputs&Formats, Products, Plotting tools, IT infrastructure at MSCW and Home Exercises

Training Course presentations on https://wiki.met.no/emep/page1 /emepmscw_opensource **EMEP-WRF** interface

TFMM, Zagreb, 6th May 2013

WRF/EMEP evaluation two resolutions Ozone at 90 UK/AURN sites

Courtesy Massimo Vieno

TFMM, Zagreb, 6th May 2013

LRTAP

EMEP Open source code 2013 rv 4.3, Released April 2013 https://wiki.met.no/emep/page1/emepmscw_opensource

- Available MSCW support on documentation, grids, nesting, emissions and ECMWF meteorology clarified
- WRF offers now a flexible meteo source => Group ?
- Boundary conditions from standard EMEP simulations could be a future product for national model use
- User forum, FAQ, email list will be renewed
- Course should be repeated, probably bi-annually

Simulations Overview 2012/13 for GP and TSAP

 Gothenburg protocol and Thematic Strategy of Air Pollution revision required at different stages of negotiation EMEP model runs (always asap)

- Multiple Emission Scenarios from TFIAM and CIAM where tested in combination with base runs
- Future Source Receptor runs at 14/28/56 km resolution
- •We were glad to have a new super computer at MetNo ...

Short Name	Description	Purpose	receiving EMEP bodies
GP_2005 GP_2020 GP_CLE_2010 GP_CLE_2020 GP_CLE_2030	TNO28 & PS EMEP grids Meteo 2006-2010 UNECE GP emissions = TSAP revision work	Scenario runs Gothenburg Protocol Guidance Document	TFIAM/ CIAM; ICPs
TSAP SR 2020	TNO28 0.5x0.25 Meteo 2006-2010 SR for 55 countries NOx,SO2,NH3,PM,VOC 1400 runs, 5 base runs	TSAP revision GAINS input Scale Dependency	TFIAM/ CIAM
TSAP SR 2020 Fine/coarse grid	TNO14 and TNO 56 Meteo 2009 SR for 55 countries NOx,SO2,NH3,PM,VOC 600 runs, 10 base runs	TSAP revision GAINS input Scale Dependency	TFIAM/ CIAM

TFMM, Zagreb, 6th May 2013

Short Name	Description	Purpose	receiving EMEP bodies
TSAP 2020 Ozone boundary conditions	TNO28 0.5x0.25 Meteo 2006-2010 9 ozone perturbations +1.5 to -4 ppb	TSAP revision GAINS input Future Hemispheric Impact	TFIAM/CIAM HTAP
TSAP scenarios Jan 2012	TNO28 0.5x0.25 Meteo 2006 MCE 2020/2030/2050 nonEU 2020/2030/2050 REF 2005/2010/2020/ 2025/2030/2050	TSAP revision	TFIAM/CIAM
TSAP scenarios Sep 2012	TNO28 0.5x0.25 Meteo 2006-2010 MCE 2050 REF 2000/2005/2020	TSAP revision	TFIAM/CIAM
TSAP scenarios March 2013	TNO28 0.5x0.25 Meteo 2006-2010 P12_[A5/COB/MFR]2025 REF 2005	TSAP revision	TFIAM/CIAM

TFMM, Zagreb, 6th May 2013

Critical load exceedance of nutrient nitrogen Eq ha⁻¹ yr⁻¹

TFMM, Zagreb, 6th May 2013

Ozone peak and background reductions will lead to significantly less damage

POD1 for Deciduous forests

	2005	2030CLE	% reduction
mean	24.0	20.3	15.4%
25 th centile	16.7	14.4	13.8%
75 th centile	32.2	27.0	16.1%

TFMM, Zagreb, 6th May 2013

How to access the EMEP trend runs emep.int

MSC-W home

Unified Open Source (Wiki)

EMEP/MSC-W Models

Downloable data:

S, N, O3 and PM data S, N, O3 and PM SR tables & data

Tools:

EMEP grid

2D trajectory data

Publications:

EMEP/MSC-W

Reports

S, N, O3 and PM Country reports

Common EMEP

Status Reports

Peer-review articles from MSC-W

Other:

Model development/projects

- The chemical transport model developed at Meteorological Synthesizing Centre West (MSC-W) called the EMEP/MSC-W model. The Eulerian model was released as OpenSource code in 2008 a is under continous development for meeting new tasks within the EMEP programme and other projects.
 - EMEP/MSC-W model Open Source code
 - EMEP/MSC-W model Open Source code v.2011-06
 - The Unified EMEP model Open Source code (rv3)
 - The history of the chemical transport models developed at MSC-W
 - Downloadable modelresults:
 - S, N, PM and O₂ air concentrations and depositions
 - National totals(html, ASCII) and gridded(ASCII, Graphical map(PNG)) data
 - Source-receptor relationships

Yearly SR tables country to country, yearly SR country-to-grid data and projected SR country-to-grid data for year 2010

- · Tools for analysis of model results:
 - <u>EMEP grid</u>
 Description of coordinates, conversion, areas, country codes
 - <u>2-D air trajectories</u>
 96h trajectories(ASCII), daily sector values(ASCII) and trajectory crossings(Graphical map(PNG)) data for EMEP stations
- Publications:
 - EMEP Reports from MSC-W
 - o Country reports: main pollutants, ground level ozone and PM
 - o Common EMEP Status Reports
 - Peer-review articles from MSC-W
- Model development/Other projects
- <u>Staff at EMEP/MSC-W</u>

Contribution of emission in the EMEP domain in . Note 1/08 Germany)

TFMM, Zagreb, 6th May 2013

The data selection table

10 year Multi Component Trend Evaluation

TFMM, Zagreb, 6th May 2013

Reported Emission Trends 1990-2010 Can we verify? Falsify?

Figure 2.4: Expert estimates of the emission trends [%] in the EMEP area, 1990-2010.

TFMM, Zagreb, 6th May 2013

What do the model runs show ?

Are the peak ozone concentrations better traced ?

Where and when are the changes ? Due to emissions only....

How is the hemispheric transport influencing Europe ?

Evolution of Ozone indicators EMEP model in EU27

EU27 country report supplement to EMP status report 2012

Meteorological Synthesizing Center West met.no

TFMM, Zagreb, 6th May 2013

Evaluation EMEP model mean ozone / daily ozone maximum

TFMM, Zagreb, 6th May 2013

EMEP MSC-W trend calculations due to emissions only (meteo=2000)

Percentage change in 2010 surface ozone since 2000 [%]

Surface Ozone Anomaly relative to Mace Head clean sector year 2000

TFMM, Zagreb, 6th May 2013

LRTAP

Hemispheric transport of ozone MSC-W contribution in TF-HTAP

Extensive global & regional model runs

- Sensitivity of model ozone to hemispheric transport
- Quantification of ozone S/R (global vs regional)
- Future scenario runs
- Provision of boundary conditions to regional models North America, Europe, Asia
- Provision of infrastructure for HTAP-II intercomparison Multi-Model storage, web access, quality checks

Trends N and S Measurements versus Emissions

14 sites used for consistent sulfur trends All sites used for nitrogen trends

Torseth et al. 2012

TFMM, Zagreb, 6th May 2013

Using AeroCom tools and EBAS extract

TFMM, Zagreb, 6th May 2013

Model-Data correlation coefficient based on monthly station means

Number of Stations reporting $SO_4 = 59$ $SO_4Deposition = 87$ $SO_2 = 72$

LRTAP

Model-Data correlation coefficient based on monthly station means

TFMM, Zagreb, 6th May 2013

Model-Data correlation coefficient based on monthly station means

TFMM, Zagreb, 6th May 2013

TFMM, Zagreb, 6th May 2013

TFMM, Zagreb, 6th May 2013

10 Year Trend of European Mean Reduced Nitrogen

TFMM, Zagreb, 6th May 2013

10 Year Trend of European Mean Oxidised Nitrogen

TFMM, Zagreb, 6th May 2013

LRTAP

10 Year Trend of European Mean Particulate matter

TFMM, Zagreb, 6th May 2013

Revisit measurement data? Use model to question outliers? Fix data as trend benchmark dataset?

- Bias rather constant over time for all components!! Except maybe NH₃, RDN deposits, Nitric Acid => Sampling?
 - Ozone: nighttime values? Hemispheric transport?
 - Sulphate: sea salt correction at more sites; more SO2 dry deposition? ship emissions ?
 - ◆NH₃ upward trend, site development involved
 - \diamond NO_x reductions are small from 2000 to 2010 !

PM: missing natural dust, OC, agricultral and road dust

TFMM, Zagreb, 6th May 2013

Status report 2013 preliminary chapter outline

Status update (new and old grid) and S/R 2011

Model development : updates, including WRF/EMEP

Impact of grid revision on S/R relationships

- Scale Dependency Exercise and S/R on 3 resolutions
- Change of loads and trends
- Trend analysis (1990)-2000-2010
- Short lived climate forcers understanding
- Vertical dispersion in EMEP model
- + TFMM suggestions ??