Assessment of the reported EMEP EC/BC emissions using EMEP WSC-W modelling and EC/eBC observations

Hilde Fagerli, Svetlana Tsyro, Agnes Nyiri, Daniel Heinesen, MSC-W team

The **revision of the Gothenburg Protocol** is expected to further strengthen efforts to reduce air pollution in Europe and North America..

.. will include, among others:how to deliver further reductions of black carbon emissions;

The scope of this assessment

EC/BC emissions have been submitted to EMEP since 2015. EC fractions of PM have been operationally used for EC assessments/SR in EMEP reports

To get a better insight into emissions' quality/consistency, we

- Compared different EC emission data sets
 - EMEP reported EC/BC (EMEP-EC)
 - EMEP model 'standard' (EMEP-Standard)
 - CAMS-TNO for 2022 (CAMS-REG v7.0 REF 2.2.1) CAMS
- Run the EMEP model with the different emission data sets, for:
 - Year 2022
 - December 2017 February 2018 IMP (EMEP/ACTRIS)
 - Long term 2015-2022 (only EMEP) preliminary

National total BC

EMEP_BC_rep - tends to be higher (with exceptions), but large variability. NOTE:

BC reported by countries - unclear if it's in PM2.5 (most likely) or PM10 size fraction

- ^ Gap-filled based on reported PM2.5 emissions and PM2.5 ratio from GAINS GP review,
- * Gap-filled with data from GAINS GP review EC in PM10

EC emissions per sector (2022)

EC in $PM_{2.5}$ (2022)

N=18	EMEP-EC	EMEP-Standard	CAMS
Bias (%)	5.9	14	-4.5
R ² spatial	0.75	0.76	0.81

EC PM2.5 - 2022

EBAS-d - EMEP-EC - yearly data

EC PM2.5 - 2022

EBAS-d - EMEP-Standard - yearly data

Meteorological

Institute

Larger difference at individual sites

EMEP report

March 22

eBC (2022)

Thanks to Stephen Platt/CCC for eBC

N = 15	EMEP-EC*	EMEP-Standard**	CAMS**
Bias (%)	-7	-6.7	-25.9
R ² spatial	0.69	0.66	0.73

Equivalent BC - ALL - 2022 Aethalometer-m - intercomparison 8.0 Observation (monthly) Observation (weekly) All Models (monthly) - All Models (weekly) BC (ng 1 **EMEP-Standard** Jan 2022 Mar 2022 May 2022 Jul 2022 Sep 2022 Nov 2022 Time

Equivalent BC - 2022

Aethalometer-m - EMEP-EC - monthly data

Equivalent BC - 2022

Aethalometer-m - EMEP-Standard - monthly data

Equivalent BC - 2022

Aethalometer-m - CAMS - monthly data

*) EC ? (from emissions)

**) EC fine+EC coar

eBC - mixture of size cutoffs (PM1, PM2.5, PM10 and unknowns)

Modelled EC vs eBC: residential -> solid fuel non-residential -> liquid

Bias

EC Residential fraction: EMEP EC emissions vs eBC

Jan 2022

Mar 2022

Bias

Regional

Aethalometer-Regional-fraction-m - EMEP-EC - yearly data

eBC Residential Fraction - 2022

Aethalometer-Urban-fraction-m - EMEP-EC - yearly data

Urban

eBC Residential Fraction - ALL - 2022

eBC Residential Fraction - ALL - 2022

May 2022

Jul 2022

Time

Sep 2022

Nov 2022

Aethalometer-Urban-fraction-m - intercomparison 0.8 Observation (monthly) Observation (weekly) All Models (month) sidential Fraction1 All Models (weekly) eBC Res **EMEP-EC EMEP-Standard** Jan 2022 Mar 2022 May 2022 Jul 2022 Sep 2022 Nov 2022 Time

EC2.5 and eBC Dec 2017- Feb 2018 IMP

EC and eBC appear to stronger underestimate obs, but the data set is different from from 2022 (more C/E European sites)

Some difference btw EMEP-EC and EMEP_Std

EC PM2.5 - 2017-2018 (DJF)

Campaign-m - EMEP-EC - monthly data

Equivalent BC - 2017-2018 (DJF)

Aethalometer-m - EMEP-EC - monthly data

'Residential fraction' of EC, 2017/2018 winter

Bias

eBC Residential Fraction - 2017-2018 (DJF) Campaign-fraction-m - EMEP-EC - monthly data

dataset from

Systematically <u>higher residential heating fraction</u> from EMEP w/EC emissions, somewhat smaller overestimation by EMEP-Standard

eBC residential fractions from 'old' PMF method and 'new' aethalometer method

eBC Residential Fraction - 2017/12/01-2018/03/31 (DJF)

Campaign-fraction-m - monthly data

Old data (from 2019)

eBC Residential Fraction - 2017/12/01-2018/03/31 (DJF)

Aethalometer-fractions-m - monthly data

Latest data

Multi-year results ("Trends") for EC vs eBC

Obs: -3.44 %/yr - significant

Norwegian

Meteorological Institute

Multi-year results ("Trends") for residential fraction of

EC vs eBC

Obs: +8 %/yr - significant

"Trends" for modelled EC vs eBC at regional sites

Summary of our assessment of EC emissions

- EC reported emissions: <u>large differences</u> vs those derived from EMEP and CAMS PM2.5 emissions found for some <u>countries and sectors</u>
 - overall tends to be <u>larger</u>, but unclear wrt EC size (PM_{2.5} or PM₁₀) to be clarified!
- Comparison of modelled EC with observations (EC and eBC)
 - EMEP w/EC emissions fairly good overall for 2022 (also Residential & non-Residential)
 - but also considerable deviations at individual sites/in some countries a review of EC emissions could be recommended, e.g. Spain, Poland, France
- Fractions of residential/non-residential (solid/liquid) :
 - Fair agreement of residential EC fractions at regional sites, underestimation at urban (2022)
 - Observed Residential fractions tend to be higher than modelled in summer
 - Winter 2017-18 IPM model underestimates observed EC and eBC and overestimates residential EC in C/E Europe
 - accuracy of eBC fractions aethalometer data??
- Observations indicate significant decreasing "trend" in eBC and increasing in relative contribution of residential eBC

 Norwegian
 Metagralagian

Thank you for your attention!

MAIN QUESTION: Are the reported EMEP EC emissions of high enough quality so that EC can be included in the revised Gothenburg Protocol?

- 1. What do we know about the different emission inventories:
 - a. Different totals, different share of sectors, different share of fine/coarse?
 - b. Where do they come from (including gridding)?
- Are the results qualitatively & quantitatively different with different emission inventories?
 (e.g. in reproducing ff/tot and bb/tot, or total conc etc)
- 3. Do we reproduce the ff/bb what does that tell us about the emission sectors
- 4. Are different areas in Europe different?
- 5. Can we reproduce trends in (sectoral) emissions?
- Are trends & other results different when compared to urban/rural sites and what does that tell us? (EC in cities comes mostly from traffic and EC in rural areas mostly from wood burning, I think)

EC residential fraction vs eBC from solid fuel, 2022

Norwegian Meteorological Institute eBC, 2022

Equivalent BC - 2022

Aethalometer-m - yearly data

0.8

Equivalent BC - ALL - 2022

Aethalometer-m - intercomparison

Modelled EC vs eBC, 2022 - per country

CAMS

EMEP-Standard

Rather large variation

'Residential fraction' of EC, 2017/2018 winter

Residential Fraction - 2017-2018 (DJF)

Aethalometer-fractions-m - monthly data

Residential Fraction - 2017-2018 (DJF)

EMEP-EC - monthly data

Systematically higher residential heating fraction from EMEP w/EC emissions, somewhat less overestimation by EMEP-Standard

'Residential fraction' of EC, 2022 winter

eBC Residential Fraction - 2022 (DJF)

Aethalometer-fractions-m - monthly data

eBC Residential Fraction - 2022 (DJF)

EMEP-EC - monthly data

eBC Residential Fraction - 2022 (DJF)

EMEP-Standard - monthly data

eBC Residential Fraction - 2022 (DJF)

CAMS - monthly data

