

Air quality modelling for 5 year assessment

Paweł Durka, Jacek W. Kamiński, Joanna Strużewska, Karol Szymankiewicz

Institute of Environmental Protection – National Research Institute

IEP-NRI is legislated to carry out AQ modelling for policy support

- Chief Inspectorate of Environmental Protection:
 - Daily operational forecast (3 day forecast)
 - Annual air quality assessment (20th of March)
 - 5-year assessment (20th of May)
 - Impact of transboundary transport (30th of June)
 - Station representativeness (30th of October)
- Ministry of Climate and Environment:
 - National Air Quality Improvement Plan (30th of September)

Modelling domains

- $\mathbf{\mathbf{\hat{b}}}$
- Kaliningrad Alytu 0 C 23 g . Q. 5 0 CZECH REPUBLIC

- Central Europe: ~ 10km
 - Boundary conditions
 - Transboundary assessment
- Poland: ~2.5 km
 - Annual assessment, 5-year assessment
 - Forecast
 - Station representativeness
- 30 urban zones: 500m
 - Annual assessment

GEM-AQ model

Global Environmental Multiscale – Air Quality model

- MAQNet (2001-2008) Kaminski at al., 2008
- On-line model (host meteorological model GEM, from Environment and Climate Change Canada)
- Optimal Interpolation used for surface station assimilation
- Gas phase chemistry based on the extended ADOM-IIB mechanism
- Sectional aerosol module (12 bins)
- Anthropogenic and biogenic emissions
- HDD modulated residential emissions
- For the national modelling Central Emission Database is used

Central Emission Database – key features

- Developed by the The National Centre for Emissions Management (KOBiZE)
- Purpose: consistent database for national AQ modelling
- Estimated pollutants: SOx, NOx, CO, PM10, PM2.5, B(a)P, NMVOC, NH_{3,} CH₄
- Vector data for each sector, sharing in 0.005°x0.005°
- Emissions in SNAP category (plan to transfer to GNFR)
- BUP (bottom-up): residential combustion, industrial, road transport
- TOD (top-down): air transport, agriculture

Central Emission Database

Pollutions

- sulfur oxides
- nitrogen oxides
- CO
- PM10
- PM2.5
- B(a)P
- NMVOC
- NH₃
- CH₄

Emissions in SNAP category (plan to transfer to GNFR)

Resolution

- Vector data for each sector
- Sharing in 0.005°x0.005°

Central Emission Database

Point sources	 Organized emission from instalatios Unorganized emission from instalatios
Line sources	 roads railroads airports
Resitendial comubstion	 individual low-power heating systems
Agriculture and crops	 breeding cultivation, fertilization tractors (combustion of fuels)
Unorganized emission	 ladnfilds excavations and heaps
Natural emission	 Forets and soil

Residential combustion emission

https://doi.org/10.3390/atmos12111460

 $\left(\right)$

Trends in concentrations - gaseous pollutants

Yearly concentrations – all stations averaged Red line – modelled concentrations Blue line – measurements

Threshold limits exceedances - gaseous pollutants

Based on measurements – number of station with exceedances NOX – yearly average exceedances O3 – daily threshold exceedances

Yearly concentrations – all stations averaged Red line – modelled concentrations Blue line – measurements

Threshold limits exceedances - PM and B(a)P

Based on measurements – number of station with exceedances PM25 and B(a)P – yearly average PM10 – daily theshold

Model evaluation

- 5-year assessment shows descending trends in concentrations measured and modelled (mainly PMs and B(a)P). Highest annual average in 2021.
- Opposite trend for O3 slight increase.
- Biggest differences in particulate matter and B(a)P fields comparing 2023 to 2019
- Identification of hot-spots based on maps and measurements south of Poland
- Modelled concentrations are in good agreement with measurements
- "To do" list before 20 of May:
 - Data assimilation
 - Postprocessing upper, lower assessment thresholds, zone classifications
 - Full model evaluation (Fairmode Delta Tool)

Thank you for attention! pawel.durka@ios.edu.pl

