emep

Evaluation of modelled versus observed NMVOC compounds at EMEP sites in Europe

Yao Ge^{1,2,a}, David Simpson¹, Sverre Solberg³, Mathew Heal⁴, Stefan Reimann⁵, Willem van Caspel¹, Bryan Hellack⁶, Thérèse Salameh⁷ ¹MSC-W (Norwegian Meteorological Institute)
²UK Centre for Ecology & Hydrology, UK
³NILU, Norway
⁴School of Chemistry, University of Edinburgh, UK
⁵Empa, Switzerland
⁶German Environment Agency, Germany
⁷IMT Nord Europe, France
^anow at: Yusuf Hamied Department of Chemistry, University of Cambridge

Ge, Y., Solberg, S., Heal, M., Reimann, S., van Caspel, W., Hellack, B., Salameh, T., and Simpson, D.: Evaluation of modelled versus observed NMVOC compounds at EMEP sites in Europe, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-3102, 2024.

Challenges in model-measurement comparisons

- Emissions are often reported as a total mass of VOC: need to be converted to emissions of individual VOCs
- Many VOCs are lumped into different groups in **models**: cannot be compared with measured individual VOC concentrations
- The availability, quality, and consistency of **measurement** data can vary dramatically

Aims and progress

- Increase the VOC species set in the EMEP model with tracers for individual compounds: allows a direct modelmeasurement comparison
- Employ the model in assessing the 'goodness' of current emission inventories
- The first intensive VOC comparison study among EMEP in years: Ge et al., ACPD, 2024

Chemistry Transport Model: EMEP MSC-W

- Chemistry mechanism:CRIv2R5Em and EmChem19rc have been utilised to develop VOC tracers
- Meteorology & resolution: ECMWF at $0.1^{\circ} \times 0.1^{\circ}$
- **Tracers** (**_T**): take explicit emissions and follow speciesspecific losses to give pure concentrations

Green: for existing lumped surrogate

Blue: newly added species

Orange: have secondary production

CRIv2R5Em	Species					
Shorter-chain alkane	C2H6_T	C3H8	NC4H10_T	IC4H10_T		
Longer-chain alkane	NC5H12_T	IC5H12_T	NC6H14_T	NC7H16_T		
Alkene	C2H4_T	C3H6_T	TBUT2ENE			
Alkyne	C2H2					
Aromatics	BENZENE	TOLUENE	OXYL_T			
Alcohol	СНЗОН	C2H5OH_T	NPROPOL	IPROPOL		
Aldehyde	HCHO	CH3CHO				
Dialdehyde	GLYOX	MGLYOX				
Ketone	CH3COCH3	MEK				
Carboxylic acid	HCOOH	CH3CO2H				
Biogenic VOC	C5H8	α -PINENE	β -PINENE	XTERPENE		
Rest [†]	OTH_ALKANE_T					

Notes †: Rest includes other alkanes and some other species.

GenChem v1.0 – a chemical pre-processing and testing system for atmospheric modelling

David Simpson^{1,2}, Robert Bergström^{2,3}, Alan Briolat⁴, Hannah Imhof², John Johansson², Michael Priestley⁵, and Alvaro Valdebenito¹

Emissions: inventory and speciation profile

- Anthropogenic emissions: CAMS and CEIP inventory •
- Anthropogenic VOC (AVOC) profiles: UK NAEI •
- **National Atmospheric Emissions Inventory**
- **BVOC emissions**: calculated online from temperature, radiation and land-cover data (Simpson et al., • 1999, 2012)
- **Biomass burning (BB)**: FINN Fire INventory from NCAR •

	-												
FINN species	C2H6	C3H8	ALK4	ALK4	C2H4	C2H2	PRPE	XYLE	BENZ	TOLU	CH2O	GLYX	MGLY
EMEP species	C2H6_T	C3H8	NC4H10_T	IC4H10_T	C2H4_T	C2H2	C3H6_T	OXYL_T	BENZE NE	TOLUE NE	НСНО	GLYO X	MGLYO X
Factor	1	1	0.6255	0.3745	1	1	1	1	1	1	1	1	1
			(Andreae, A	ACP, 2019)									2

Emissions: species mapping

- Large emitting sectors: Solvents, Road Transport, Other Combustion, Fugitive
- Large VOC emissions: C2H6, C3H8, C2H4, Benzene, etc.
- CAMS: sector-F Road Transport (RT) are reported in four sub-sectors, each with their own distinct emission profiles

Boundary and initial conditions (BICs)

- The model specifies the BICs of many species using measurements from Mace Head, Ireland and a cosine function to describe monthly fields (Simpson et al., 2012, 2015; Grant et al., 2011; Waked et al., 2016)
- Monthly near-surface concentration χ_0 :

$\chi_0 = \chi_{\text{mean}} + \Delta \chi \times \cos(2\pi \frac{d_{mm} - d_{max}}{n_y})$							
model species	$\chi_{mean}~({ m ppb})$	$\Delta\chi_{mean}$ (ppb)	\mathbf{d}_{max}				
C2H6_T	1.544	0.77	75				
C2H2	0.456	0.23	75				
C3H8	0.263	0.13	45				
NC4H10_T	0.095	0.05	45				
IC4H10_T	0.044	0.02	45				
NC5H12_T	0.026	0.01	45				
IC5H12_T	0.026	0.01	45				
OTH_ALKANE_T	1.546	0.77	45				
НСНО	0.7	0.3	180				

Measurements

- Measurement data are compiled from the EBAS platform: <u>ebas-data.nilu.no</u>
- The model-measurement agreement is intrinsically constrained by differences in:
 - > The number of sites per species
 - Sampling techniques (Online GC, steel canisters)
 - Sampling duration and frequency

Alkane species: shorter-chain alkanes

- Agreement that ethane has the highest annual concentrations among these alkanes (~ 1.6 ppb);
- Modelled ethane also shows good temporal agreement with observations
- Clear model overpredictions for NC4H10_T but underpredictions for IC4H10_T

VOC ratios: i-/n-butane

- Similar sources and chemical loss rates: similar lifetimes of 3-4 days (Helmig et al., 2014; Zhang et al., 2013; Watson et al., 2008)
- Strong linear correlations between i- and nbutane are observed in both measurement and model data: common sources
- Measurement data: *i/n* ≈ 0.6, similar across different seasons; same as the values in other measurement studies (Helmig et al., 2014)
- Model results: $i/n \approx 0.2$, ratios are lower in winter compared to e.g., spring

VOC ratios: i-/n-butane in emissions

- The ratio in <u>BICs ≈ 0.5 ; ≈ 0.6 in <u>BB</u> emissions</u>
- Examining individual sectors: solvent is the largest contributor but has a ratio < 0.05, followed by fugitive sector with a ratio of 0.28.
- Possible explanations: the speciation of solvent sector is biased (e.g., missing i-butane emissions while overestimating n-butane), or contributions from road transport-non-exhaust sectors are underestimated

Alkane species: i- and n-pentane

- Similar sources (traffic exhaust, fuel evaporation) and lifetimes (ca. 2 days)
- Strong model-measurement linear correlations are found for both species despite the low concentrations (annual means ~ 0.1 ppb)
- Albeit i-pentane contributes comparable emissions to n-pentane, the model significantly underestimates i-pentane concentrations
- Several studies suggest that i-pentane emissions are not adequately captured in emission inventories despite its significance within urban environments (Coll et al., 2010; Borbon et al., 2002)

Comparison statistics. N is the number of sites. Mean_O and Mean_M refer to the annual average concentrations (in ppb) of observation (O) and model (M) over all sites, respectively. NMB is the Normalised Mean Bias, and NME is the Normalised Mean Error.

VOC ratios: i-/n-pentane

- Measurements affected by anthropogenic sources: i/n = 1.7~2.9 (Helmig et al., 2014; Bourtsoukidis et al., 2019); same BICs; BB and oceanic emissions: 0.5~0.7 (not modelled)
- Modelled ratios are much smaller than measured ratios, which is driven by large n-pentane emissions from solvent sector
- Agricultural VOCs: need more emission measurements

Unsaturated VOCs: ethene, ethyne and benzene

- Mixed results: good agreement for ethene and benzene but not for ethyne
- The different model performance points to shortcomings in the spatial patterns and magnitudes of ethyne emissions
- Modelled ethyne levels cluster around 0.35 ppb: mainly determined by its BICs
- Compared to the previous model run (no BICs and BB emissions), current model underestimation is improved
- Inputs of anthropogenic emissions are too small to significantly affect the model outputs

Unsaturated VOCs: ethene, ethyne and benzene

- Modelled ethyne: little seasonal variation; missing winter ethyne emissions (e.g., transport and industrial combustion)
- Measured benzene is closely correlated with ethyne in winter: common sources of the two species
- Model results show poor correlation: problematic ethyne emissions (given the good model performance for benzene)

BENZENE/C2H2	Sun	nmer	Winter			
	Obs	Mod	Obs (R)	Mod (R)		
Beromünster	0.26 (0.82)	0.33 (0.57)	0.34 (0.96)	0.98 (0.63)		
Kosetice	0.26 (0.47)	0.35 (0.62)	0.29 (0.93)	0.46 (0.15)		
Waldhof	0.24 (0.77)	-0.00 (-0.01)	0.30 (0.99)	-0.20 (-0.11)		
Neuglobsow	0.31 (0.88)	0.00 (0.01)	0.31 (0.99)	-0.02 (-0.01)		
Zingst	0.17 (0.83)	-0.03 (-0.13)	0.30 (0.97)	-0.77 (-0.40)		
Pallas	0.11 (0.43)	-0.03 (-0.48)	0.28 (0.94)	-0.04 (-0.06)		
Peyrusse Vieille	0.04 (0.09)	-0.07 (-0.58)	0.24 (0.91)	-0.40 (-0.22)		
La Tardiere	0.25 (0.41)	-0.10 (-0.63)	0.29 (0.93)	0.17 (0.15)		
Auchencorth Moss	0.18 (0.76)	0.08 (0.34)	0.19 (0.89)	0.03 (0.04)		

Summary: more info at Ge et al., ACPD, 2024

- This model evaluation study adapts the EMEP model to assess the accuracy of recent emission inventories and the agreement between modeled and measured VOC concentrations. The agreement varies by species, suggesting potential biases in emissions estimates for certain VOCs and sectors
- Discrepancies between modeled and measured i-to-n-butane and i-to-n-pentane ratios suggest biases in solvent sector speciation profiles or underestimates of transport sector totals in current inventories
- Disparate model performance for ethene, benzene, and ethyne suggests limitations in representing spatial, temporal, and emission magnitude patterns for ethyne from combustion-related sectors

> Agricultural sectors need more attention

Acknowledgement

- We acknowledge all data providers and the great efforts of **EMEP** and **ACTRIS** to make long-term measurements public and available, and for the work with quality assurance and quality control of VOC data in Europe.
- **The Norwegian Ministry of Climate** is also greatly acknowledged for supporting both model and database development at the EMEP Centres, MSC-W and CCC.
- Measurements in Beromünster were supported by FOEN (Swiss Federal Office for the Environment) and by ACTRIS-CH. We are also grateful to Adéla Holubová and the whole measurement team from Czech Hydrometeorological Institute, for their contribution to the measurement data in Košetice.
- We also extend our gratitude to the **UK NAEI** team for supplying the speciated VOC emissions data. Our thanks are due as well to Antoon Visschedijk, Jeroen Kuenen, and the **TNO** team for their valuable assistance with the VOC speciation of agricultural emissions.