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Challenges in model-measurement comparisons

« Emissions are often reported as a total mass of VOC: need to be Atmospheric

“bOX_"

converted to emissions of individual VOCs
| Chemical Chemical |
| production  p loss

« Many VOCs are lumped into different groups in models: cannot be L !
—! Ao !

compared with measured individual VOC concentrations inflow F;, | ! outfloiw F,.;
« The availability, quality, and consistency of measurement data can | [ i !

vary dramatically Emission Deposition

Aims and progress

o Increase the VOC species set in the EMEP model with tracers for individual compounds: allows a direct model-

measurement comparison
« Employ the model in assessing the ‘goodness’ of current emission inventories

o The first intensive VOC comparison study among EMEP in years: Ge et al., ACPD, 2024



Chemistry Transport Model: EMEP MSC-W

: : "RIV2RSE Specie:
- Chemistry mechanism:CRIV2R5Em and EmChem19rc have = _CRIVZRSEM Species
. Shorter-chain alkane ~ C2H6_T C3HS NC4HI0_T  IC4HI0_T
been utilised to develop VOC tracers _ i
Longer-chain alkane  NC5HI12_T ICSH12. T NC6HI4 T  NCTHI6 T
« Meteorology & resolution: ECMWEF at 0.1° x 0.1° Alkene CaHa T CHo T TBUTZENE
Alkyne C2H2
» Tracers (_T): take explicit emissions and follow species- Aromatics BENZENE  TOLUENE  OXYL.T
- : : 'H3 2H50
specific losses to give pure concentrations Alcohol CH3OH C2HSOH_T IPROPOL
Aldehyde
Green: for existing lumped surrogate Dialdehyde
Ketone
Blue: newly added species Carboxylic acid
Biogenic VOC C5HS a-PINENE  3-PINENE  XTERPENE
Rest’ OTH_ALKANE_T

Notes {: Rest includes other alkanes and some other species.

GenChem v1.0 — a chemical pre-processing and testing system
for atmospheric modelling
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Emissions: inventory and speciation profile

EMEP Centre on Emission
Inventories and Projections

Anthropogenic emissions: CAMS and CEIP inventory

Lopernicus

Anthropogenic VOC (AVOC) profiles: UK NAEI &Nationa' Atmospheric

Emissions Inventory

BVOC emissions: calculated online from temperature, radiation and land-cover data (Simpson et al.,
1999, 2012)

Biomass burning (BB): FINN - Fire INventory from NCAR

FINN
species

EMEP
species

Factor

C2H6  C3H8 ALKA4 ALKA4 C2H4 C2H2 PRPE XYLE BENZ TOLU CH20 GLYX MGLY
C2H6_T C3H8 |NC4H10_T IC4H10_T| C2H4. T C2HZ C3H6_T OXYL_T BENNEZE TONLEU E HCHO GI;(YO MG;ZYO
1 1 0.6255 0.3745 1 1 1 1 1 1 1 1 1

(Andreae, ACP, 2019)




Emissions: species mapping

 Large emitting sectors: Solvents, Road

Transport, Other Combustion, Fugitive

 Large VOC emissions: C2H6, C3H8,
C2H4, Benzene, etc.

 CAMS: sector-F Road Transport (RT) are
reported in four sub-sectors, each with

their own distinct emission profiles
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Boundary and initial conditions (BICs)

* The model specifies the BICs of many species using measurements from BICs examples
Mace Head, Ireland and a cosine function to describe monthly fields - | —— CoHeT
(Simpson et al., 2012, 2015; Grant et al., 2011; Waked et al., 2016) g :
% 1.5 I
* Monthly near-surface concentration y,: = Ny i
1
— dmm_dmax Ia'n Fc;b MlarlA;)r M;w Iu'n |l;| Atqu Sép O'ct N(')v Déc
X0 = Xmean T Ax X cos(2m m ) 0.40 -
model species Xmean (PPD)  AXmean (Ppb)  dmaz = 2:
C2H6_T 1.544 0.77 75 $ s
C2H2 0.456 0.23 75 ® 020,
C3H8 0.263 0.13 45 0-15'l e~
NC4H10 T 0.095 0.05 45 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
IC4H10_T 0.044 0.02 45 o HCHO
NCSHI12_T 0.026 0.01 45 5 0.8-
ICSHI2_T 0.026 0.01 45 j
OTH_ALKANE_T 1.546 0.77 45 =0
HCHO 0.7 0.3 180 0.4 -
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Measurements

» Measurement data are compiled from the EBAS
platform: ebas-data.nilu.no

» The model-measurement agreement is intrinsically
constrained by differences in:

» The number of sites per species

» Sampling techniques (Online GC, steel canisters)

» Sampling duration and frequency
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https://ebas-data.nilu.no/Default.aspx

Alkane species: shorter-chain alkanes

Agreement that ethane has the
highest annual concentrations
among these alkanes ( ~ 1.6

ppb);

Modelled ethane also shows
good temporal agreement
with observations

Clear model overpredictions
for NC4H10 T but
underpredictions for
IC4H10 T
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VOC ratios: 1-/n-butane

Similar sources and chemical loss rates:
similar lifetimes of 3-4 days (Helmig et al.,
2014; Zhang et al., 2013; Watson et al.,
2008)

Strong linear correlations between i- and n-
butane are observed in both measurement
and model data; common sources

Measurement data: i /n =~ 0.6, similar
across different seasons; same as the values
in other measurement studies (Helmig et al.,
2014)

Model results: i /n = 0.2, ratios are lower
in winter compared to e.g., spring
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VOC ratios: I-/n-butane in emissions

CAMS Inventory

CAMS emissions
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Alkane species: I- and n-pentane

» Similar sources (traffic exhaust, fuel
evaporation) and lifetimes (ca. 2 days)

« Strong model-measurement linear correlations
are found for both species despite the low
concentrations (annual means ~ 0.1 ppb)

 Albeit i-pentane contributes comparable
emissions to n-pentane, the model
significantly underestimates i-pentane
concentrations

» Several studies suggest that i-pentane
emissions are not adequately captured in
emission inventories despite its significance
within urban environments (Coll et al., 2010;
Borbon et al., 2002)

Model-CRI (ppb)
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NSH12 T 9 0.085 0.113 32% 43%
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Comparison statistics. N is the number of sites. Mean_O and Mean_M refer to the annual average
concentrations (in ppb) of observation (O) and model (M) over all sites, respectively. NMB is the
Normalised Mean Bias, and NME is the Normalised Mean Error.
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VOC ratios: I-/n-pentane

Measurements affected by anthropogenic sources: i/n =
1.7~2.9 (Helmig et al., 2014; Bourtsoukidis et al., 2019); same
BICs; BB and oceanic emissions: 0.5~0.7 (not modelled)

Modelled ratios are much smaller than measured ratios, which
Is driven by large n-pentane emissions from solvent sector

Agricultural VOCs: need more emission measurements
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Model-CRI (ppb)

Unsaturated VOCs: ethene, ethyne and benzene
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Mixed results: good agreement for ethene and benzene but not for ethyne

The different model performance points to shortcomings in the spatial patterns and magnitudes of ethyne emissions

Modelled ethyne levels cluster around 0.35 ppb: mainly determined by its BICs

Compared to the previous model run (no BICs and BB emissions), current model underestimation is improved

Inputs of anthropogenic emissions are too small to significantly affect the model outputs
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Unsaturated VOCs: ethene,

* Modelled ethyne: little seasonal variation; missing winter

ethyne emissions (e.g., transport and industrial combustion)

« Measured benzene is closely correlated with ethyne in winter:

common sources of the two species

* Model results show poor correlation: problematic ethyne
emissions (given the good model performance for benzene)

NO——,— Summer Winter

Obs Mod Obs(R) Mod (R)
Beromiinster 0.26 (0.82) 0.33(0.57) 0.34 (0.96) | 10.98 (0.63)
Kosetice 0.26 (0.47) 0.35(0.62) 0.29 (0.93) | (0.46 (0.15)
Waldhof 0.24 (0.77)  -0.00 (-0.01) | 0.30(0.99) | |-0.20 (-0.11)
Neuglobsow 0.31 (0.88) 0.00 (0.01) 0.31 (0.99) | |-0.02 (-0.01)
Zingst 0.17 (0.83) -0.03 (-0.13) | 0.30(0.97) | |-0.77 (-0.40)
Pallas 0.11 (0.43) -0.03(-0.48) | 0.28 (0.94) | |-0.04 (-0.06)
Peyrusse Vieille 0.04 (0.09) -0.07 (-0.58) | 0.24(0.91) | |-0.40 (-0.22)
La Tardiere 0.25(0.41) -0.10(-0.63) | 0.29(0.93) | |10.17 (0.15)
Auchencorth Moss | 0.18 (0.76)  0.08 (0.34) 0.19 (0.89) | 10.03 (0.04)

ethyne and benzene

C2H2: CHOO53R, Beromiinster, 2018 (res: 1h; H: 797.0 m)
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Summary: more info at Ge et al., ACPD, 2024

» This model evaluation study adapts the EMEP model to assess the accuracy of recent emission inventories and the
agreement between modeled and measured VOC concentrations. The agreement varies by species, suggesting
potential biases in emissions estimates for certain VOCs and sectors

» Discrepancies between modeled and measured i-to-n-butane and i-to-n-pentane ratios suggest biases in solvent
sector speciation profiles or underestimates of transport sector totals in current inventories

» Disparate model performance for ethene, benzene, and ethyne suggests limitations in representing spatial, temporal,
and emission magnitude patterns for ethyne from combustion-related sectors

» Agricultural sectors need more attention
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