Intensive measurement periods

- summer 2022 on VOCs, SOA and ozone
- summer/autumn on VOCs

Wenche Aas, Sverre Solberg et al.

Background /Objectives

- High ozone episodes are typically underpredicted by atmospheric transport models. Provide data for model improvement
- Decrease in summer peaks, but the reductions are lower compared to the reductions in NMVOC and NOx emissions. More insight in the VOC sources/emissions
- VOC observations in EMEP is limited in respect of compounds (few sites with O-VOCs and terpenes) and frequency (grab sampling at several) Get spatial information of range of VOC
- Biogenic secondary organic aerosols (BSOA) important secondary pollutant of VOCs. Tracer analysis to assess main sources of BSOA

The setup for the one-week intensive sampling

- Sites already have ozone, NOx/NO₂ observations, several also EC/OC
- Forecasted the best week for high ozone levels

1) Extended the regular EMEP observations

- ✓ include missing VOC component groups (NMHC, OVOC, Monoterpenes)
- \checkmark increase sampling frequency to daily sampling all the sites
- ✓ Equip sites with continuous sampling if available (i.e. PTR-(ToF)-MS, GC/FID)

2) Additional manual sampling.

Distributed devices and centralised analysis:

- ✓ NMHC: Canister air sampling (FZ Jülich, Germany)
- ✓ O-VOCs: DNPH cartridge (IMT, France)
- ✓ Monoterpenes: Tenax tubes (FMI, Finland)
- SOA tracers: Use part of EC OC filters from regular monitoring (IGE, France)

Data available in EBAS

- 5074 datasets
- 13 countries
- 28 sites
- 158 components

Tracers (46 different) yet to be added (end of May)

	World data centres on - Aerosols (GAW-WDCA) - Reactive Gases (GAW-WDCRG)	ACTRIS
Framework [1] >>All CAMPAIGN Instrument type [11] >>All ads_tube aws chemiluminescence_molybdenum chemiluminescence_photolytic high_vol_sampler low_vol_sampler online_oc	Country [13] >>All Austria Belgium Cyprus Czech Rep. Finland France Garmany Component [158] >>All 1-2-3-4-tetramethylbenzene 1-2-3-trimethylbenzene 1-2-3-trimethylbenzene 1-2-4-timethylbenzene 1-2-4-trimethylbenzene 1-2-4-trimethylbenzene 1-2-4-trimethylbenzene 1-3-5-triethylbenzene 1-3-5-triethylbenzene 1-3-5-trimethylbenzene 1-3-5-trimethylbenzene	Station [28] >>All Agia Marina Xyliatou / Cyprus Atmospheric Observator Auchencorth Moss Barcelona (Palau Reial) Beromünster Bilbao, Feria Bilbao, Maria Díaz de Haro Birkenee II Matrix [4] >>All air met pm10 pm25
Map (Populate) (Show large)	Finland Swede N 5 V N 5 V N 5 V V V V V V V V V V V V V V V V V V V	Additional resources Near-Real-Time data European Monitoring and Evalution Programme (EMEP-CCC) Site descriptions - EMEP WMO Global Atmosphere Watch (GAW) Site descriptions - GAW Air mass trajectories Data submission About EBAS EBAS User Feedback Tracker

nilu

https://ebas-data.nilu.no

Defined new naming convention for PTR-MS and PTR-ToF-MS

				Ebas vocabulary		
				new names (white)		
m/z (unit mass)		D		established names (green)		
OMS	Tof MS	Parent ion	Compound attributions	PTR-ToF-MS	PTR-QMS	
31	31.018	CH2OH+	Methanal (formaldehyde)	methanal	methanal	
33	33,033	CH4OH+	Methanol	methanol	methanol	
42	42,034	C2H3NH+	Acetonitrile	acetonitrile	acetonitrile	
45	45.033	C2H4OH+	Ethanal (Acetaldebyde)	ethanal	ethanal	
43	47.013	CH202H+	Formic acid	formic acid	Centana	
47	47.049	C2H6OH+	Ethanol	ethanol	mass_47_organic_compounds	
57	57.033	C3H4OH+	2-propenal (Acrolein), methylketene	mass 57.033 organic compounds	mass_57_organic_compounds	
57	57.070	C4H8H+	Butene, 2-methylpropene (Isobutylene), 1-Butanol, 2-Butanol	mass_57.070_organic_compounds		
59	59.049	C3H6OH+	Propanone (Acetone), Propanal	mass_59_organic_compounds	mass_59_organic_compounds	
61	61.028	C2H4O2H+	Acetic acid, Hydroxyethanal (glycolaldehyde)	mass_61.028_organic_compounds	mass_61_organic_compounds	
61	61.065	C3H8OH+	n-propanol (1-propanol), 2-Propanol	mass_61.065_organic_compounds		
63	63.026	C2H6SH+	dimethylsulfide	dimethylsulfide	dimethylsulfide	
69	69.033	C4H4OH+	Furan	furan	mana co annais annanada	
69	69.070	C5H8H+	Isoprene (2-Methylbuta-1,3-dien), Cyclopentene	isoprene	mass_69_organic_compounds	
71	71.049	C4H6OH+	3-buten-2-one (Methyl vinyl ketone (MVK)), 2-methylpropenal (Methacrolein (MACR), 2-Methyl-2-propen-1-al), 2-Butenal (crotonaldehyde)	mass_71_organic_compounds	mass_71_organic_compounds	
73	73.028	C3H4O2H+	Methylglyoxal, Acrylic acid (propenoic acid)	mass_73.028_organic_compounds	mass_73_organic_compounds	
73	73.065	C4H8OH+	Butanal, 2-Methylpropanal (Isobutyraldehyde), 2-Butanone (methyl ethyl ketone (MEK)), Tetrahydrofuran	mass_73.065_organic_compounds		
75	75.044	C3H6O2H+	Methyl acetate (acetic acid methyl ester)	methyl_acetate	methyl_acetate	
79	79.054	C6H6H+	Benzene	benzene	benzene	
93	93.010	C3H5ClOH+	1-Chloropropan-2-one (Chloroacetone)	chloroacetone		
93	93.033	C6H5O+	1,2 Epoxybenzene	epoxybenzene		
93	93.057	C6H7N +	Anilin	mass 02.06 ordenia compounda	marc 02 organic compounds	
93	93.055	C3H9O3+	Propanoic acid water cluster	mass_95.00_organic_compounds	mass_95_organic_compounds	
93	93.070	C7H8H+	Toluene, p-cymene	mass_93.070_organic_compounds	-	
93	93.091	C4H13O+	Ethanoldimer, Butanol-Water-Cluster	mass_93.091_organic_compounds		
105	105.070	C8H9+	Styrene	styrene	styrene	
107	107.049	C7H6OH+	Benzaldehyde	benzaldehγde mass_107_organic_compounds		
107	107.086	C8H10H+	o-Xylene, m-Xylene, p-Xylene, ethylbenzene, C8-alkylbenzenes			
113	113.015	C6H5ClH+	chlorobenzene (monochlorobenzene -MCB)	chlorobenzene	chlorobenzene	
121	121.101	C9H12H+	1,2,3-trimethylbenzene,1,2,4-trimethylbenzene,1,3,5-trimethylbenzen, C9- alkylbenzenes	mass_121_organic_compounds	mass_121_organic_compounds	
137	137.132	C10H16H+	Monoterpenes	monoterpenes	monoterpenes	
L			· ·	•		

in cooperation with ACTRIS CiGas

Ozone, daily maximum (Data from EEA)

Does the EIVIEP model underpredict the Ozone peaks? Daily max obs (blue) and model (black), 12-19 July vs temperature (colourscale)

cont. urban sites

Important to get the Nox emissions right to get correct levels at urban sites –though difficult with representativity

Distribution of different VOC groups at selected sites

- Only compared components measured with comparable methods (central analysis).
- All the sites are dominated by OVOCs and C2-C5 NMHCs, and their relative contribution does not vary very much between the sites even though they are situated in quite different environments, some differences seen though:
 - Illmitz (AT0002R) that has a larger fraction of C6-C12 NMHCs.
 - Madrid (ES0021U) has the highest relative influence of aromatic VOCs
 - Viesalam (BE0007R) is situated in a forest and has relatively large contribution of monoterpenes

Detailed information on VOC speciation from central analyis

NO0002R

Urban sites

Regional sites

BE0007R, ES1778, FR0008R,FR0018 and IT0004R comparable to urban levels

<u>)(s</u>

Spatial and temporal variation of selected VOCs

Isoprene

Propanone (acetone)

Tracers used for apportioned biogenic organic aerosols into secondary and primary categories, at Ispra and Grenoble

Organic aerosols during the intensive measurement week (IMP) was apportioned to:

- 20% from oxidation of α -pinene
- 50% from oxidation products of isoprene and anthropogenic emissions
- 13% -14% from fossil fuel (FF)
- 6% OC from biomass burning (BB)
- Primary biological particles (PBAP): 13% at Grenoble but only 2 % at Ispra

Up to 80% of organic aerosol was attributed to SOA

Discussions

- The IMP period does not show a general underprediction of the ozone peaks
- Both ozone and VOC increase towards north during the IMP week
- Higher concentrations of NMHC in urban areas otherwise large variations between sites
- Relative concentrations between VOC groups similar across sites.

Further process on IMP 2022

- This IMP will probably not answer the question of which VOC may cause an underestimation of ozone during heat waves. Need a broader perspective and incl more models
- Publish a PAN European assessment of the various VOC levels dynamic during this heat wave –submit during 2024
- Include work on organic tracers -linked to the levels of the different VOCs

A new VOC intensive measurement campaign planned for 2024

• Discussed at TFMM web call meeting in October - invitation sent out in 2 April

Focus:

16

- Speciated VOC emissions. Knowledge gaps in speciated VOC emissions, measurements near emission sources, notably industrial and urban sites, including harbors. -include regional sites (preferably twin sites, wherever feasible.
- Enhanced temporal resolution. Acknowledging the varying lifetimes and evaporation potential of VOCs, our priority is high temporal resolution over extensive spatial coverage. May complement automated methods with manual sampling at selected sites to attain detailed specifications.
- Extended duration. In contrast to the one-week period of IMP-2022, IMP-2024 will span an entire month. This extended timeframe will enable us to better capture variations in emissions and facilitate comparisons with model calculations.
- ESIG kindly offered to sponsor also the campaign

Feedback so far (not decided - potential sites)

Online – high resolution measurements

- France. Several French sites (local municipalities) are interested with online (GC and PTR-MS?) rural/urban. At least Strasbourg (urban site), Donon and Peyrusse Vieille (rural sites), -**September**
- Spain. Measurement campaign in Barcelona harbor July?
- Belgium. Vielsalm (forest), Engis (industrial/harbor influenced), Uccle in Brussels (semi-urban) PTR-MS
- Finland. SMEAR IV / Puijo, VocusPTR- MS (+ adsorbent tube samples for offline GC analysis.)
- Italy/Ispra online GC
- Switzerland. on-line instruments for NHMCs and OVOCs at Zuerich and at Beromuenster.
- Germany. Melplitz and (Eisenbahnstrasse (street canyon station) PTR-MS (ACTRIS online GC for campaign

Manual

- Germany UBA 6-7 EMEP/ACTRIS stations -manual sampling)
- Spain. CIEMAT Madrid. VOC analysis with TENAX
- Italy. LIEFEREMY project urban NMVOC relevant for SOA formation.

Suggestion for VOC campaign in 2024

- One month sampling September
- **High resolution measurements** (PTR-MS, GC-MS) at a variety of sites urban, industry, regional
- ITM Nord France will assist in coordinating and make QA/QC data available
- Possibly organise additional manual sampling and centralised analysis (ITM Nord) at selected sites to supplement the high-resolution measurements

