

Task Force on Hemispheric Transport of Air Pollution

HTAP3-OPNS

Multi-model simulations of Ozone, Particles, and deposition of N and S

Global to regional downscaling of ozone in support of the revision of the CLRTAP Gothenburg Protocol

Tim Butler (co-chair TF-HTAP)

TFMM Annual Meeting, Warsaw, May 6, 2024

TF-HTAP and TFMM joint workplan items ('24-25) WUNECE

1.1.1.7	On basis of recent evidence, long- term trends and uncertainty in future projections, provide insight into robustness of modelled long-term O3 projections in relation to CH4 mitigation	Synthesis of O3 mitigation options	TFHTAP, TFMM, MSC- W
1.1.3.0	Contribute to Gothenburg Protocol revision as mandated by Executive Body	Pending decision by Executive Body in December 2023	TFIAM, CIAM <mark>, TFMM</mark> , MSC-W, CCC, TFHTAP, CCE, WGE
1.1.3.2	O3 modelling of future scenarios	Organize new global model simulations of future scenarios developed by CIAM, including examination of role of CH4, source attribution methods, link to regional scale and impacts	TFHTAP, TFIAM, CIAM, TFMM, MSC-W, ICP Vegetation
1.1.4.2	Organize new global and regional model simulations of historical trends and future scenarios for Gothenburg Protocol pollutants with assessment of human health and vegetation impacts	Initial findings assessment (2025)	TFHTAP, TFMM, MSC- W, CIAM, ICP Vegetation

Convention on Long-range **Transboundary Air Pollution**

General features of HTAP3-OPNS

- Focus on ozone, particles, and the deposition of N and S
 - Assessment of scenarios from the GAINS model
 - How to include methane in the revised Gothenburg Protocol?
 - Quantify and understand the model spread in surface ozone response
- Seeking input from different modelling systems
 - Traditional CTMs and ensemble emulators (as for previous HTAP assessments)
 - Coupled chemistry-climate models
 - Global-regional downscaling
- White paper: https://nextcloud.gfz-potsdam.de/s/NqgxtQb6ELJw76S

HTAP3-OPNS White Paper

- 1. Motivation
- 2. Science-Policy Questions
- 3. Experimental Design
- 4. Input Data Sets
- 5. Requested Output Data
- 6. Timelines
- 7. Links with Other Multi-Model Activities

HTAP3-OPNS work streams

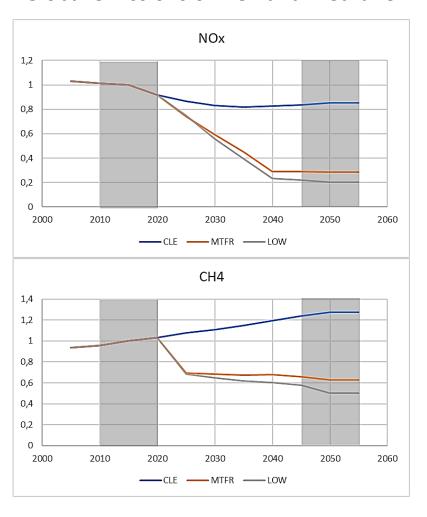
- Future scenario simulations
 - Transient Global Chemistry-Climate simulations
 - GAINS LRTAP future scenarios for 2010-2050
 - Assessment of future air quality including the role of methane
- Source/receptor (perturbation) simulations
 - Global CTM simulations
 - Source-receptor relationships based on GAINS LRTAP scenarios
 - Ensemble emulator for rapid scenario assessment
- Historical transient simulations
 - Specified dynamics / CTM simulations
 - 2000-2020 using the HTAPv3.1 global emission mosaic

Supporting the revision of the Gothenburg Protocol

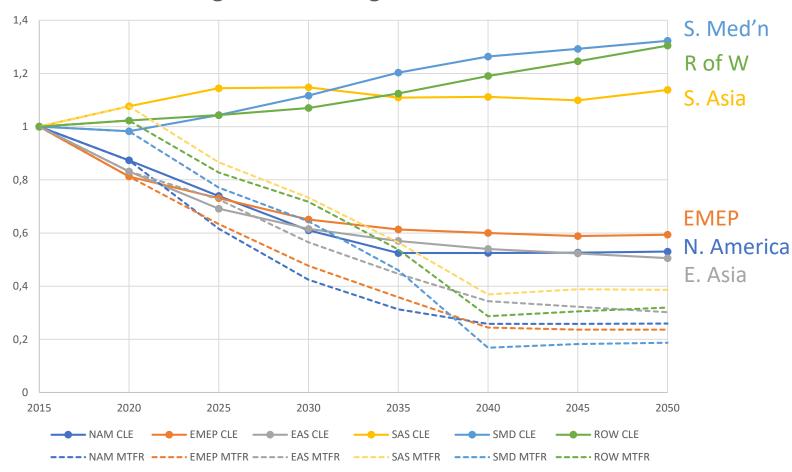
Supporting ongoing HTAP work

GAINS LRTAP future scenarios (2010-2050)

Convention on Long-range Transboundary Air Pollution


- Scenarios developed by IIASA/CIAM to inform the review of the Gothenburg Protocol
 - CLE
 - Includes all current air quality policies and implementation plans
 - Climate forcing broadly consistent with SSP2-4.5
 - MTFR
 - Same activity datasets as the CLE scenario
 - Maximum technically feasible reduction in emissions of all air pollutants (including methane)
 - Full implementation of proven measures regardless of cost effectiveness
- Hybrid scenario proposed by TF-HTAP
 - HILO
 - Methane from CLE and other pollutants from MTFR
 - High ambition on "Gothenburg Pollutants" and low ambition on methane

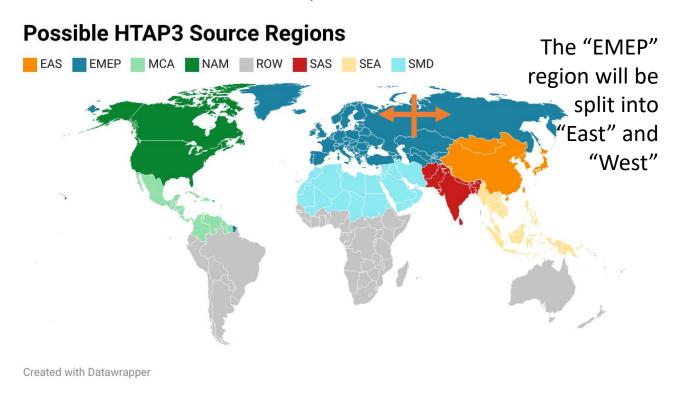
GAINS LRTAP future scenarios (GP review)

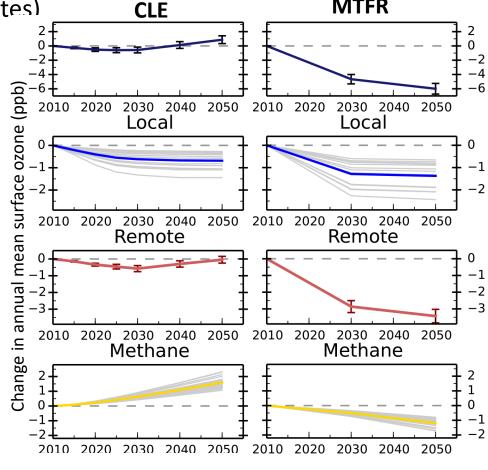


Convention on Long-range Transboundary Air Pollution

Global emissions of NOx and methane

NOX Change Within a Region Relative to 2015

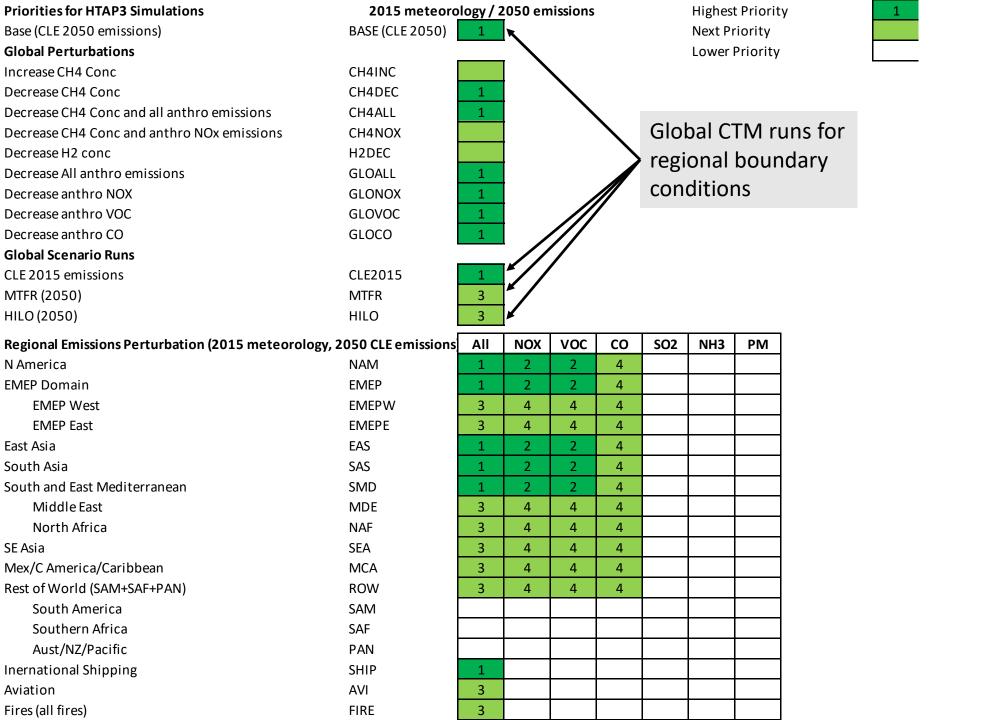

Perturbation runs and ensemble emulator development



Convention on Long-range **Transboundary Air Pollution**

MTFR

- Simulations with an ensemble of global CTMs (2015 meteorology)
 - Set of ~25 emission perturbation runs (GAINS 2050 CLE emissions) **Results from HTAP2 (Europe)**
 - Source-receptor relationships (with uncertainty estimates)
 - Emulator development



Remote

Local

Methane

Convention on Long-range Transboundary Air Pollution

Proposal for joint TF-HTAP / TFMM work

- TF-HTAP provides boundary conditions for the CAMS domain from four GAINS scenarios
 - CLE2015; CLE2050; MTFR2050; HILO2050
- Boundary conditions from at least three global models
 - EMEP model
 - Two other global models ("high" and "low")
- Regional models simulate the four GAINS scenarios + one
 - CLE2050 boundary condition + MTFR2050 within the CAMS domain
- Regional model setup
 - Ozone season: April- September
 - 2015 meteorology

Proposal for joint TF-HTAP / TFMM work

	Global model boundary condition													
'	EMEP				Model A			Model B						
Regional model simulation	CLE2015	CLE2050	MTFR2050	HILO2050	CLE2015	CLE2050	MTFR2050	HILO2050	CLE2015	CLE2050	MTFR2050	HILO2050		
CLE2015	Х				Х				х					
CLE2050		X				X				Х				
MTFR2050			Х				Х				Х			
HILO2050				Х				Х				X		
CLE2050+MTFR2050-CAMS		X				X				Х				

- Maximum number of simulations per regional model: 15 (six months April-September)
 - Prioritisation needed?
- Expected results:
 - Air pollution impacts under the GAINS scenarios
 - Role of local ozone precursors, remote ozone precursors, and methane
 - Assessment of the robustness of the results from the EMEP model
 - Comparison of the regional ensemble with the global ensemble

Transboundary Air Pollution

Proposed timeline for this work

- July 2024
 - Revised GAINS LRTAP scenarios available
 - HTAP3-OPNS global simulations can begin
- September 2024
 - Presentation of first results using GAINS scenarios to CLRTAP
 - First set of joint TF-HTAP/TFMM regional simulations can begin
- Early 2025
 - Most HTAP3-OPNS global simulations completed
- First half of 2025
 - Remaining joint TF-HTAP/TFMM simulations can be done
- September 2025 May 2026
 - Window for presentation of results to inform the revision of the Gothenburg Protocol

Summary and outlook

- Opportunity for a joint TF-HTAP / TFMM contribution to the revision of the Gothenburg Protocol
 - Global-regional downscaling of GAINS LRTAP future scenarios
 - Role of European/remote ozone precursors and methane
 - Robust results due to ensembles of global and regional models
- Regional simulations to be done between September 2024 and June 2025
- Results presented to CLRTAP between September 2025 and May 2026

Interest?