Convention on Long-range Transboundary Air Pollution

emep

Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe Meteorological Synthesizing Centre -West (MSC-W)

Norwegian Meteorological Institute

 \sim

Impact of background methane & regional and global emission reductions on surface ozone

Willem van Caspel, Hilde Fagerli, Dirk Olivié, Agnes Nyiri & others at IIASA EMEP/MSC-W, Norwegian Meteorological Institute

Overview

Central questions

- 1. CH_4 pathways and its impact on regional (European) surface O_3
- 2. Impact of regional and global emission reductions

In this talk

- IIASA CLE and LOW emission scenarios up to 2050
- Box-model CH₄ concentrations
- Global and regional simulations using the EMEP MSC-W CTM

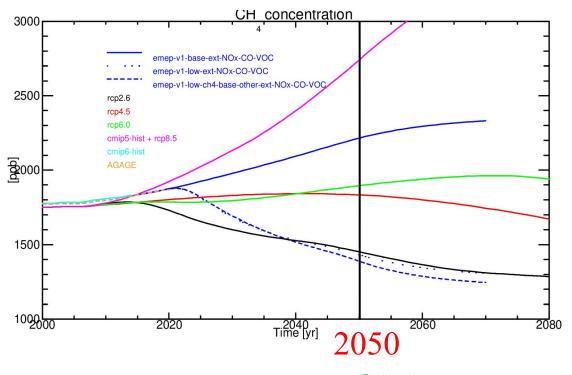
Emission scenarios

Base (CLE) and LOW (MFR + diet changes) scenarios from IIASA

Table 1: Emission totals in the <i>base</i> and <i>low</i> scenarios.	Units are $Tgyr^{-1}$ (units for NOx are in $Tg[NO_2]yr^{-1}$).
---	--

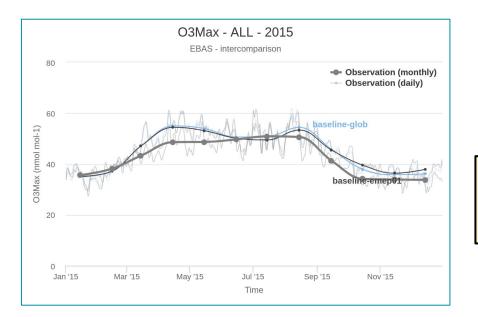
Species	Scenario	2015	2020	2025	2030	2035	2040	2045	2050
NOx	base	116.733	108.108	103.199	99.557	98.353	99.741	100.843	102.766
NOx	low			96.709	72.091	50.457	31.333	28.489	25.479
VOC	base	109.639	108.605	108.009	106.493	106.244	106.106	107.054	108.001
VOC	low			82.816	63.786	52.607	40.325	38.682	37.975
CO	base	520.696	478.156	452.961	431.273	422.837	416.719	413.736	412.045
CO	low			311.963	202.579	162.562	111.974	108.771	107.165
CH_4	base	337.869	348.738	363.545	374.668	388.444	404.783	419.621	431.086
CH_4	low			231.155	219.031	208.302	202.947	195.578	168.966

Anthropogenic CH_4 emissions reduced by 50% relative to 2015, 60% relative to 2050 CLE


Background CH₄ pathways

Natural $CH_4 \approx 240$ Tg/yr by tuning to observed 2015-2019 global average

	CLE	LOW	LOW CH ₄ only
2015	1834	1834	1834
2030	1979	1683	1692
2050	2215	1431	1389


~10% decrease from 2050 to 2070 when 2050 LOW emissions are continued

Norwegian Meteorological Institute

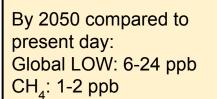
EMEP MSC-W model

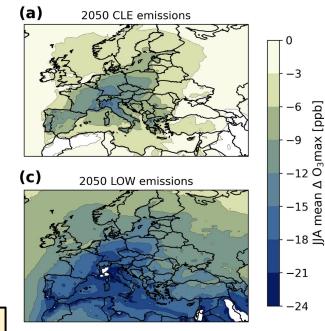
- Global 0.5° x 0.5° and regional (nested) 0.1° x 0.1° EMEP domain simulations
- 2015 meteorological year based on IFS, including 100 hPa O₃ BC
- Annual mean background [CH₄] specified in the chemistry

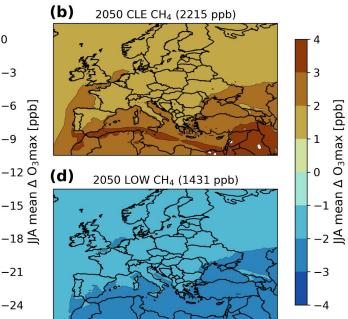
N = 138 EU stations from the EBAS dataset vs. global and regional EMEP models

Nearly identical O₃ results between the coarse and fine grids

5


Impacts of CH₄ and other emission reductions compared to 2015 (base)


Global simulations for JJA O₃max

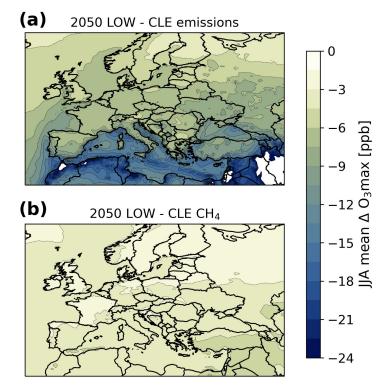

- (a) {BaseEm,BaseCH₄} {CLE2050,BaseCH₄}
- (b) {CLE2050,BaseCH₄} {CLE2050,CLE2050CH₄}
- (c) {BaseEm,BaseCH₄} {LOW2050,BaseCH₄}

6

(d) {LOW2050,BaseCH₄} - {LOW2050,LOW2050CH₄}

Note the different colour scales Baseline $CH_4 = 1834$ ppb

─ Norwegian Meteorological ✓ Institute

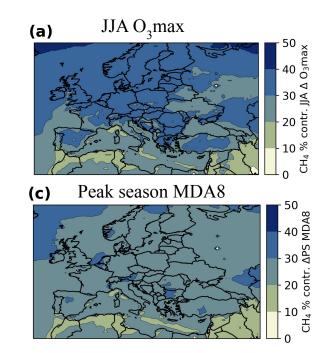

Impacts of LOW emission reductions and CH_4 relative to 2050 CLE

Global simulations

- (a) {CLE2050,CLE2050CH₄} {LOW2050,CLE2050CH₄} { $LOW2050,CLE2050CH_4$ }
- (b) {LOW2050,CLE2050CH₄} {LOW2050,LOW2050CH₄}

784 ppb difference between LOW (1431) and CLE (2215) CH_4

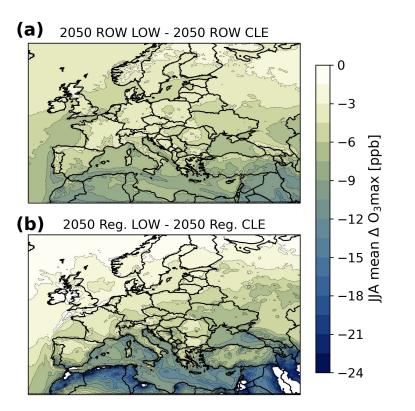
Compared to 2050 CLE, LOW scenario EU O_3 max reductions $\frac{2}{3}$ from emission reductions, $\frac{1}{3}$ from CH₄


Norwegian Meteorological Institute

Relative impact CH₄ on O₃ reductions compared to 2050 CLE

Percentage total O_3 reductions due to CH_4 relative to 2050 CLE

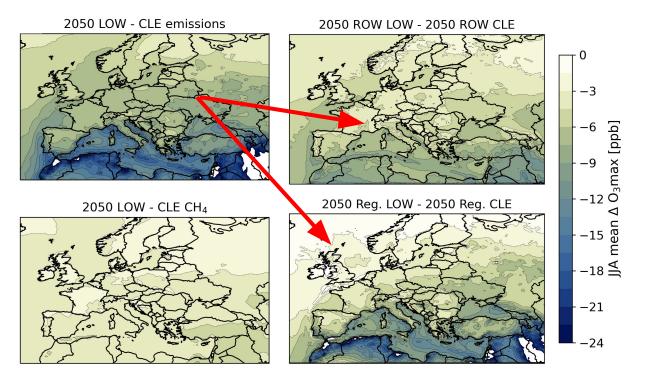
a. JJA O₃max**c.** Peak season MDA8


 $\sim \frac{1}{3}$ contribution of CH₄ in total reductions relative to 2050 CLE

European and non-European mitigation by 2050

Regional (Reg) EMEP domain with nested (Nest) BCs from LOW & CLE global runs for 2050

- (a) {LowNest,BaseReg} {BaseNest,BaseReg}
- (b) {LowNest,LowReg} {LowNest,BaseReg}



O Norwegian Meteorological Institute

Relative O₃max (JJA) impacts

Compared to 2050 CLE, effect of CH_4 mitigation on JJA O_3 max of the same magnitude as LOW ROW and LOW Europe

Comparing to present day (2015), global LOW is much more important and CH_4 less important

Peak season MDA8 in 2050 LOW

Regional model with LOW emissions + LOW BCs and LOW CH_4 (1431 ppb)

2050 LOW emissions and CH₄ WHO guidelines not met in the 2050 LOW scenario 90 2050 LOW (MET 2017 - MET 2015) / MET 2015 x 100% 15 season MDA8 10 5 0 peak -5 -10 🗄 Meteorological year? 15 % **leteorologica** Institute

Conclusion

50% CH_4 emission reduction relative to 2015 reduces background CH_4 by 22% (~400 ppb) by 2050 relative to 2015 (1834 ppb), but by 35% (~800 ppb) relative to 2050 CLE (2215 ppb)

Results for 2050 European surface O₃

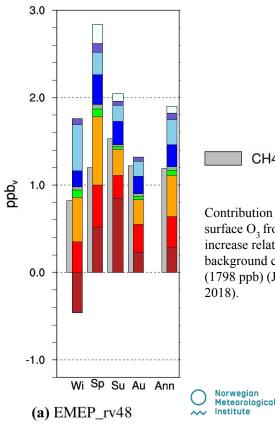
- Relative to present day, the impact of CH_4 is small compared to the impact of emission reductions
- JJA O_3 max reductions between CLE and LOW are $\sim \frac{1}{3}$ due to CH₄ and $\sim \frac{1}{3}$ due to both ROW and regional non-CH₄ emission reductions

Policy on CH_4 is important for further reducing projected surface O_3 concentrations

Challenges

- Natural CH_4 emissions are uncertain (100-300 Tg/yr), as are anthropogenic CH_4 emission projections
- Feasibility of the CLE scenario
- Inter-model variability in CH₄ response
- Impact of meteorological year \rightarrow Climate change?

Extra slides


Norwegian Meteorological Institute

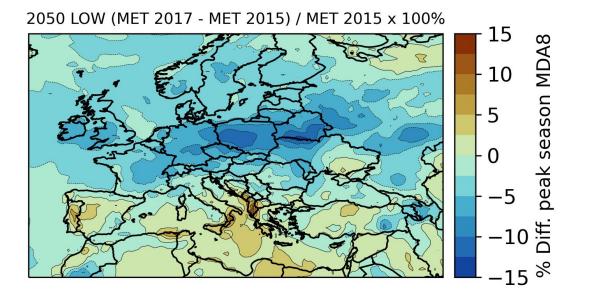
Comparison to earlier work

Jonson et al. (2018) reported annual mean 1.2 ppb surface O_3 increase over Europe with 20% CH_4 increase (~400 ppb)

 \rightarrow consistent with the current model setup shown below {2015 baseline $CH_4 \times 1.2 - 2015$ baseline}

Contribution to European surface O_3 from a 20% CH₄ increase relative to 2010 background concentrations (1798 ppb) (Jonson et al.,

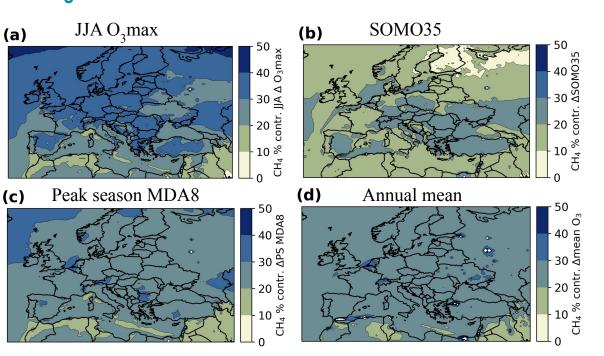
CH4


Box-model

- Box-model background CH₄ concentrations for CLE and LOW emission scenarios
- Natural $CH_4 \approx 240 \text{ Tg/yr}$ by tuning to observed 2015-2019 global average

Impact meteorology on peak season MDA8

2050 LOW scenario shows considerable peak season MDA8 variability between different meteorological years


Relative impact CH₄ on O₃ reductions compared to 2050 CLE

Percentage total O_3 reductions due to CH_4 for different O_3 metrics

a. JJA O_3 max

- **b.** SOM035
- c. Peak season MDA8
- **d.** Annual mean

Generally between 20-40% contribution from CH_4 , highest for JJA O_3 max

