Rest

Application of EMEP4PL for BaP concentrations modelling for Poland

Małgorzata Werner¹, Paweł Porwisiak¹, Maciej Kryza¹, Massimo Vieno², Mike Holland³, Helen ApSimon⁴, Anetta Drzeniecka-Osiadacz¹, Krzysztof Skotak⁵, Lech Gawuc⁵, Karol Szymankiewicz⁵

- 1. Faculty of Earth Sciences and Environmental Management, University of Wrocław, Poland
- 2. UK Centre for Ecology & Hydrology, Edinburgh, UK
- 3. Ecometrics Research and Consulting, Reading RG8 7PW, UK
- 4. Centre for Environmental Policy, Imperial College London, UK.
- 5. Institute of Environmental Protection–National Research Institute, Warsaw, Poland

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 856599.

The study aims

- Calculate BaP concentrations for Poland (with EMEP4PL) for selected years to show:
 - Impact of winter severity on BaP concentrations and exceedances of the target value (1 ng/m3)
 - Population exposure to BaP concentrations in Poland
 - The health effects of exposure to BaP in Poland

Methods – modelling framework

Chemical transport model: EMEP4PL

- Version: 4_34
- Met data: WRF (v. 3.9) with observational nudging

Emissions:

- EMEP 0.1° x 0.1° for Europe
- KOBIZE (National Centre for Emission Management) 1km x 1km for Poland

Methods – modelling framework

Chemical transport model: EMEP4PL

- Version: 4_34
- Met data: WRF (v. 3.9) with observational nudging

Emissions:

- EMEP 0.1° x 0.1° for Europe
- KOBIZE (National Centre for Emission Management) 1km x 1km for Poland
- Health effects: AlphaRisk
 - Number of additional lung cancer cases (ALCC)

Methods – study design

EMEP4PL run for 3 years

- average (BASE): 2018, meteorology 2018, emissions 2018
- cold: 2010, meteorology 2010, emissions 2018
- warm: 2020, meteorology 2020, emission 2018
- Modelled results compared with obs. for 2018
- Differences between the years were analysed
 - Concentrations
 - Population exposure
 - Health effects

Methods – measurements data

Meteorological:

 Hourly T₂ for the winter seasons from Institute of Meteorology and Water Management used to chose average, cold and warm years (2010-2020)

BaP concentrations

- Weekly data from GIOŚ for the year 2018, around 120 stations
- Used to validate te modelling results
- Population data from JRC (Joint Research Centre)

Results

BaP concentrations, monthly, 2018

BaP verification, 2018

MB	MGE	NMB	NMGE	RMSE	R	ΙΟΑ
-2,22	2,66	-0,52	0,62	5,51	0,67	0,69

Time series of modelled and observed BaP concentrations in 2018 in Krakow, Wroclaw, Gdańsk, Warszawa.

Statistical measures for modelmeasurements comparison for 7-days mean BaP concentrations for Poland (120 stations).

BaP annual mean, 2010, 2018, 2020

BaP annual mean, 2010, 2018, 2020

BaP annual mean, 2010, 2018, 2020

- Significant impact of meteorological conditions on BaP concnetrations
- Important for air pollution control activities and exceedances of TV

Population exposure for BaP annual mean concentrations for the year 2010, 2018 and 2020; health effects with AlphaRisk

BaP, year, annual average, exposed population (%)								
< TV		> TV						
< 0.12 ng m ⁻³	0.12 – 1 ng m ⁻³	1 – 2 ng m ⁻³	> 4 ng m⁻³					
2018								
0	3	41	52	4				
2010								
0	2	37	58	4				
2020								
0	10	57	32	1				

Population exposure for BaP annual mean concentrations for the year 2010, 2018 and 2020; health effects with AlphaRisk

BaP, year, annual average, exposed population (%)							
< TV		> TV					
< 0.12 ng m ⁻³	0.12 – 1 ng m ⁻³	1 – 2 ng m ⁻³		2 – 4 ng m ⁻³	> 4 ng m⁻³		
2018							
0	3	41		52	4		
2010							
0	2	Total number of lung cancer					
	20 cases per year						
0	10						
	BASE: 73						
	WARM: 57						

Full length article

Modelling benzo(a)pyrene concentrations for different meteorological conditions – Analysis of lung cancer cases and associated economic costs

Paweł Porwisiak ^{a,*}, Małgorzata Werner ^a, Maciej Kryza ^a, Massimo Vieno ^b, Mike Holland ^c, Helen ApSimon ^d, Anetta Drzeniecka-Osiadacz ^a, Krzysztof Skotak ^e, Lech Gawuc ^e, Karol Szymankiewicz ^e

^a Faculty of Earth Sciences and Environmental Management, University of Wrocław, Kosiby 8, 51-621 Wroclaw, Poland

^b UK Centre for Ecology & Hydrology, Edinburgh Research Station, Bush Estate, Penicuik, Midlothian EH26 0QB, UK

^c Ecometrics Research and Consulting, Reading RG8 7PW, UK

^d Centre for Environmental Policy, Imperial College London, London SW7 1NE, UK

^e Institute of Environmental Protection–National Research Institute, Krucza 5/11D, 00-548 Warsaw, Poland

Further steps/applications

- Scenario simulations with EMEP4PL for BaP concentrations
 - Emission reduction scenarios for residential sector
 - Task for the European Clean Air Centre

- Application of high resolution uEMEP for BaP modelling for Poland
 - Prelimnary results of appilcation of uEMEP for PM2.5 for Poland show the improvement for the model-measurements comparison (especially for the areas with high contribution of residential sector).

EMEP4PL i uEMEP for Wrocław (SW Poland) – annual mean PM2.5 conc

12.00 to 13.11 13.11 to 13.64 13.64 to 14.20 14.20 to 14.86 14.86 to 15.73 15.73 to 17.04 17.04 to 22.01

4km x 4km

"Hotspots" confirmed with the mobile measurements.

50m x 50m

EMEP4PL i uEMEP for Wrocław (SW Poland) – annual mean PM2.5 conc

- uEMEP with slightly higher domain wide median value
- uEMEP with locally higher PM2.5 annual mean concetrations (marked as outliers)

Summary

- EMEP4PL model was applied to calculate BaP concetrations over Poland.
- Three full year simulations: 2010 (cold), 2018 (average), 2020 (warm).
- The temporal variability of BaP concentrations is properly represented by the model.
- A significant influence of meteorological conditions on BaP concentrations.
- Almost the entire Polish population (>90%) is exposed to BaP concentrations above the annual TV of 1 ng m⁻³.
- Future step application of high resolution uEMEP model for BaP modelling for Poland.

Thank you

Alpha Risk

- The number of ALCC: 8.7 x 10-5 per 1 ng/m3 (BaP),
 - which was calibrated for exposure over a 70-year lifetime.
- Therefore, the number of lung cancer cases per 1 ng/m3 per person in 1-year equates to 1.2 x 10-6.
- To determine deaths from BaP exposure, the survival rate for lung cancer was set at 19% (ECIS, 2019).

Error statistics

Name	Formula	Range of values	Expected value
Mean Bias (MB)	$MB = \frac{1}{N} \Sigma_1^N (P_i - O_i)$	[-Ō, +∞]	0
Normalized Mean Bias (NMB)	$NMB = \frac{\sum_{i=1}^{N} (P_i - O_i)}{\sum_{i=1}^{N} O_i}$	[-1, +∞]	0
Mean Gross Error (MGE)	$MGE = \frac{1}{N} \Sigma_1^N P_i - O_i $	[0, +∞]	0
Normalized Mean Gross Error (NMGE)	$NMGE = \frac{\sum_{i=1}^{N} P_i - O_i }{\sum_{i=1}^{N} O_i}$	[0 <i>,</i> +∞]	0
Pearson Correlation Coefficient (R)	$R = \frac{\sum_{i=1}^{N} (M_i - \overline{M}) (O_i - \overline{O})}{\left\{ \sum_{i=1}^{N} (M_i - \overline{M})^2 \sum_{i=1}^{N} (O_i - \overline{O})^2 \right\}^{\frac{1}{2}}}$	[-1,1]	1
Index of Agreement (IOA)	$IOA = 1 - \frac{\sum_{i=1}^{N} (M_i - O_i)^2}{\sum_{i=1}^{N} (M_i - \overline{O} + O_i - \overline{O})^2}$	[0,1]	1

BaP conc – seasonal stats

	N	MB	MGE	NMB	NMGE	IOA
annual	5804	-2.22	2.66	-0.52	0.62	0.69
spring (MAM)	1561	-1.52	2.47	-0.41	0.66	0.70
summer (JJA)	1440	-0.07	0.16	-0.32	0.70	0.55
autumn (SON)	1476	-2.78	2.88	-0.66	0.69	0.56
winter (DJF)	1327	-4.75	5.36	-0.50	0.56	0.49