

 \bigcirc

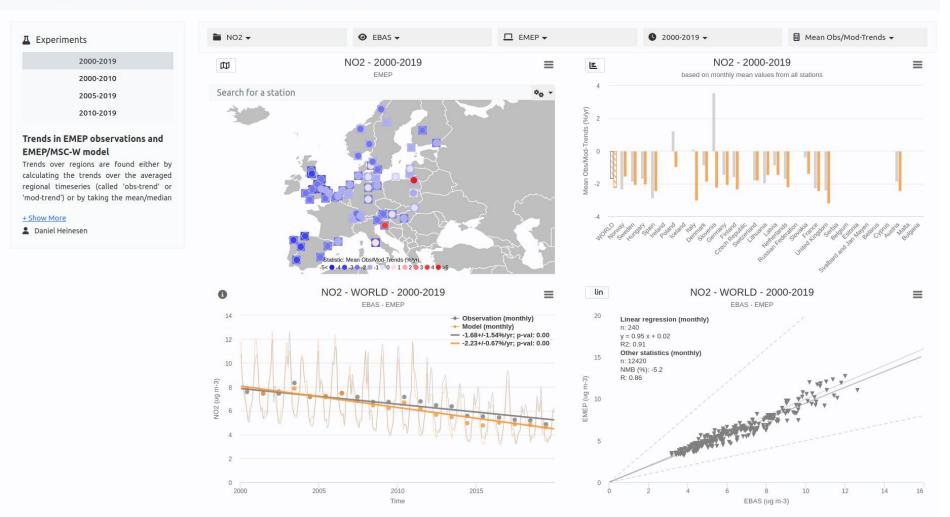
Norwegian Meteorological Institute Co-operative programme for monitoring and evaluation of the long-range transmissions of air pollutants in Europe

Progress in EMEP/MSC-W activities 2021/2022

Hilde Fagerli, Bruce Denby, David Simpson, Svetlana Tsyro, Agnes Nyri, Daniel Heinesen, Augustin Mortier, Arjo Segers, Anna Benedictow, Peter Wind, Lewis Blake & the rest of the MSC-W team

TFMM, 3-5th May, 2022

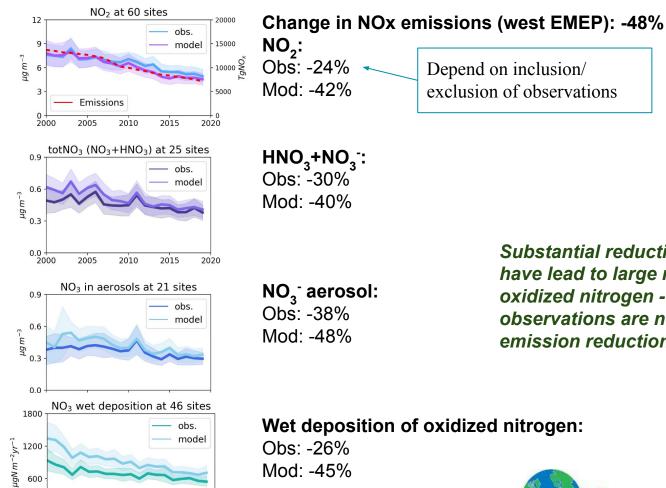
Activities 2021/2022


- 1. Application of EMEP/uEMEP for the AAQD review process, *Bruce Denby (Thursday 10:00)*
- 2. Modelling impact of condensable organics, 2005-2019; results of the NMR-RWC project, David Simpson (Wednesday 9:20)
- 3. Work to feed the new extended multiscale GAINS -> Gregor Kiesewetter CIAM/IIASA 10:40 on Thursday
- 4. Trends & trend interface
- 5. Using satellite data to evaluate West Balkan/EECCA emissions & model simulations
- 6. Preparation for VOCs campaign

Trends & the Trend interface

The EMEP trend interface

- Interface: <u>https://aeroval.met.no/evaluation.php?project=emep-trends</u> (Comments on observational data by Parties very welcome)
- All EMEP observations & EMEP/MSC-W model runs
- 2000-2019, 2000-2010, 2010-2019, 2005-2010
- EBAS & EBAS-raw (all observation sites)
- EC/OC only from 2010 onwards
- Regional trends, mean (median) of individual stations
- MSC-W & CCC cooperation


AVAeroVal 🕅 Maps 🗠 Evaluation 🧬 Intercomparison 🌐 Overall Evaluation 🚯 Information

Trends in air pollution 2000-2019

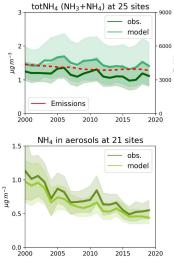
- How has the trend study been done:
 - Model calculations in 0.1x0.1 with **revised emissions** (total and gridding)
 - EMEP observations
 - Sulphur (SO₂, SO₄²⁻, wet dep), oxidized nitrogen (NO₂, HNO₃, NO₃⁻, wet dep), reduced nitrogen (NH₃, NH₄⁺, wet dep), PM_{2.5} and PM₁₀ (chemical species, **including EC/OC from 2010-2019**), ozone
- Issues: trends for EECCA (and western Balkan) countries are not presented as reported emissions to a large extent is missing and observations are lacking large uncertainties
- For PM: 'condensables' are included *as they are in reported EMEP emissions*, thus they are not consistently included (historical data set including condensables did not yet exist)
- Documented in EMEP Status Report 1/2021

2000

2005

2010

2015


2020

Trends in oxidized nitrogen

Substantial reductions in NOx emissions have lead to large reductions in observed oxidized nitrogen - but the changes in observations are not as large as the reported emission reductions

RETAP Long-range Transboundary Air Pollution

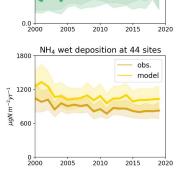
NH₃ at 8 sites

mode

2.1

1.4

hg m⁻³

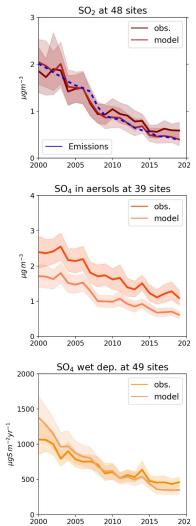

Change in NH₃ emissions: -12% (west EMEP) $NH_{3} + NH_{4}^{+}$: gNH₃ Obs: - 28% Mod: - 26% NH⁺ aerosol: Obs: - 49 %

Trends in reduced nitrogen

Norwegian

Meteorological

The modest reductions in reported NH₃ emissions in EMEP west is confirmed by observations and **NH**₃ in air: very few statistically modelling results. Large differences significant trends (and few sites), in trends for different reduced nitrogen but on average a positive trends compounds can be explained by interactions with sulphur and oxidized nitrogen compounds



Reduced N wet deposition: few statistically significant trends

Obs: - 6% Mod: - 5%

Mod: - 49 %

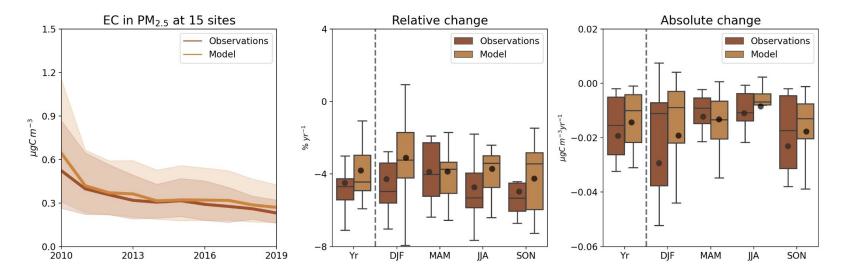
(by ca. 30%)

Change in SO₂ emissions: -82% (west EMEP)

SO₂: Obs: - 74% Mod: - 97%

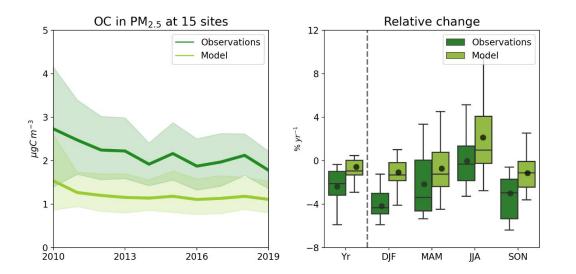
SO₄²⁻ aerosol: Obs: - 61% Mod: - 72%

Sulfur wet deposition:


Obs: - 60% Mod: - 81%

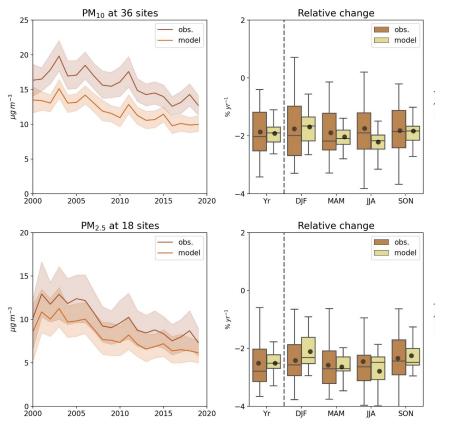
Significant reductions in SOx emissions have led to decreasing concentrations of sulphur dioxide, particulate sulphate and wet deposition of oxidized sulphur (although a observations show a somewhat smaller decrease)

Trends in sulfur


EC 2010-2019

EC: Ca. -4%/yr 2010-2019 both in observations and model

OC 2010-2019


OC:

- Only 2 sites show statistically significant trends in observations
- More pronounced downward trends in winter time OC in observations (6/15), only 1/15 in the model
- Trends in summertime OC were much less clear in both the model and observations (biogenic sources).
- The model underpredict OC, both in terms of absolute values and trends at least partly due to condensables

Efforts are needed to separate and understand natural and anthropogenic components of OC, in order to get a quantitative overview of the abatable fractions

PM_{10} and $PM_{2.5}$ 2000-2019

PM₁₀: Obs: - 35% Mod: - 37% Reductions in SIA (SO₄²⁻, NO₃⁻, NH₄⁺) contributed substantially. Considerable reductions in EC and winter time OC (at least in 2010-2019).

Relative trends are well reproduced by the model, although absolute levels and trends are somewhat underestimated (partly due to condensables)

PM_{2.5}: Obs: - 46% Mod: - 48%

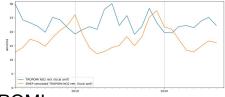
Long-range Transboundary Air Polluti

Lower trends in PM₁₀ than PM_{2.5} due to natural contributions to the coarse fraction

Summary, Trends

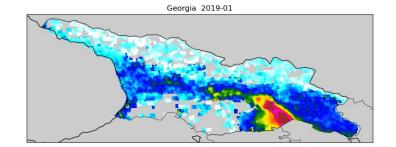
- Large changes in emissions the last 20 years have led to large reductions in concentrations and depositions of S and N species and concentrations of PM
- Overall there is consistency between reported emission changes, model runs and observations, except OC and NO₂/OXN

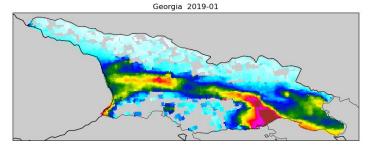
Using satellite data for evaluation of (emissions used for) West Balkan & EECCA

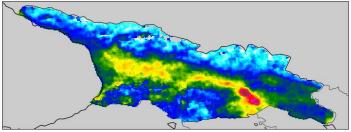

Use of satellite data: why and how

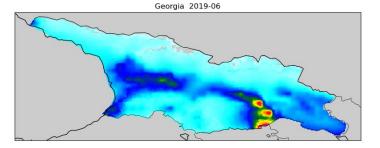
• Why?

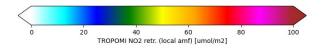
Very few surface observations available for West Balkan, EECCA Emissions are more uncertain that in 'EMEP West'

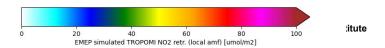

- Tropospheric columns of NO₂ (SO₂, HCHO, CO) from TROPOMI/Sentinel-5p
- Model runs May 2018-2020 (ensuring similar overpass and kernel so that data from model and observations are directly comparable)
- Overall levels, spatial distribution, seasonal cycles
- Next step: analyses, including analyses using 'new' GAINS emissions

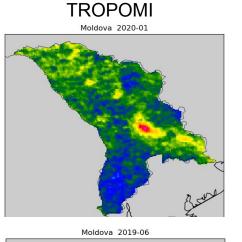

Example Georgia (emission data used in 2021)

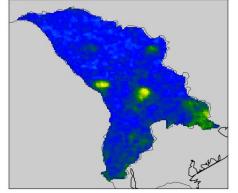

TROPOMI

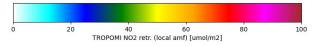


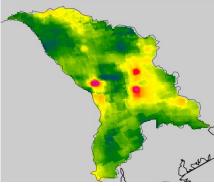


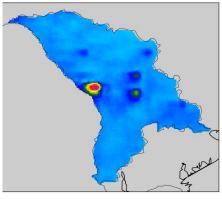


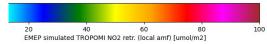


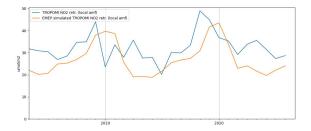




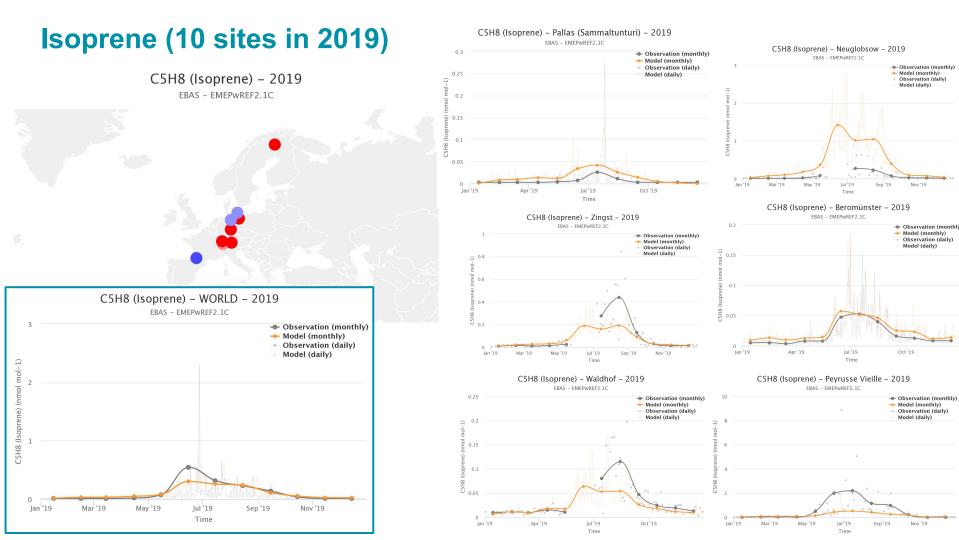

Example Moldova (emission data used in 2021)





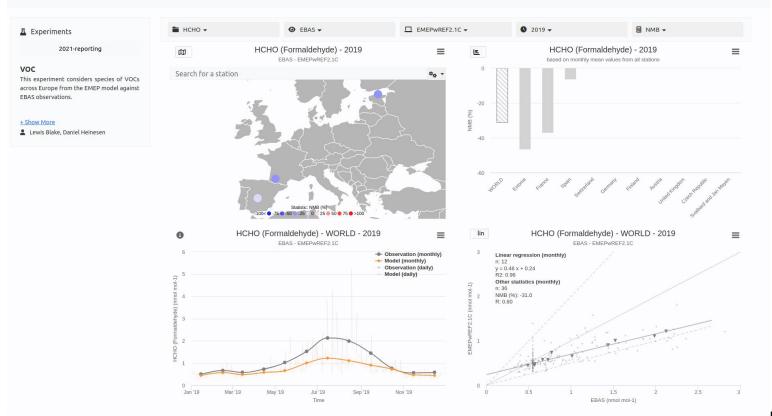


Moldova 2019-06

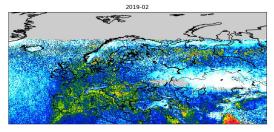


Norwegian Meteorological Institute

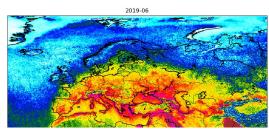
Preparing for the VOC campaign


Preparing for the VOC campaign

- Evaluation of EMEP MSC-W results towards existing EMEP measurements (add species with direct emissions that are measured) -> assessing assumed emissions
- VOC speciation
- Satellite data, TROPOMI Sentinel-5p HCHO


Formaldehyde (3 sites in 2019)

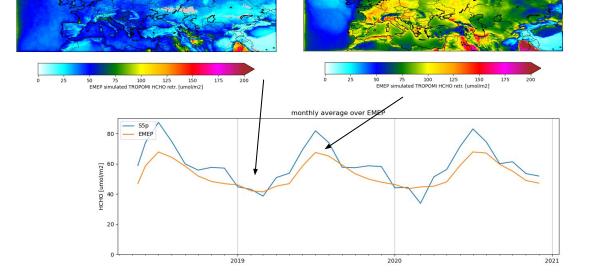
A /AeroVal Maps 🗠 Evaluation 🖉 Intercomparison 🖽 Overall Evaluation 🚯 Information


rological Institute

Comparison S5p and EMEP : HCHO

2019-02

ST.S.


2019-06

• S5p HCHO

- somewhat noisy product ...
- higher values around 60N in winter?

• EMEP simulation:

- too low in summer

Co-operative programme for monitoring and evaluation of the long-range transmissions of air pollutants in Europe

Thank you for listening!

Norwegian Meteorological Institute