## Modelling the impact of the COVID-19 lockdown on air quality in Spain

Marta G. Vivanco, Mark R. Theobald, Juan Luis Garrido, Victoria Gil, Alejandro Rodríguez-Sánchez, Fernando Martín

Atmospheric Pollution Unit. Research Centre for Energy, Environment and Technology (CIEMAT), Madrid, Spain

Carlos Ordóñez, José Manuel Garrido

Complutense University, Madrid, Spain





**23** <sup>nd</sup> **EMEP TFMM Meeting** Online Meeting, 3-5 May 2022



1) Does the model respond to the emission reductions in a similar way to the observations?

2) Are there any policy messages?



### Model setup

### Simulations 2020:



#### Emissions 2018

Emissions : EMEP a 0.1º x 0.1º (http://www.ceip.at/ms/ceip\_home1/ceip\_h ome/webdab\_emepdatabase/; EMEP, 2021), 2018.

Spain: National Emission Inventory (NEI)



Emissions 2018 with COVID reductions

- Guevara et al. 2021 Feb 21th-July 31th
- CIEMAT estimates (Rodriguez-Sánchez et al. 2022) August, 1st-December 31th, inspired in Guevara et al. 2021



Meteorological outputs from IFS (2020)

**Guevara, M.,** Jorba, O., Soret, A., Petetin, H., Bowdalo, D., Serradell, K., Tena, C., Denier van der Gon, H., Kuenen, J., Peuch, V.-H., and Pérez García-Pando, C.: Time-resolved emission reductions for atmospheric chemistry modelling in Europe during the COVID-19 lockdowns, Atmos. Chem. Phys., 21, 773–797, <u>https://doi.org/10.5194/acp-21-773-2021</u>, 2021









## Relative Differences – Annual NMVOC emissions 2020-2018



|            | gobierno<br>de españa | ministerio<br>de ciencia, innovación<br>y universidades | Centro de Investigacione<br>Energéticas, Medioambient             |
|------------|-----------------------|---------------------------------------------------------|-------------------------------------------------------------------|
| <b>THE</b> | DE ESPAÑA             | DE CIENCIA, INNOVACIÓN<br>Y UNIVERSIDADES               | Centro de Investigaci<br>Energéticas, Medioambi<br>y Tecnológicas |

| GNFR_A_PUBLICPOWER | GNFR_C_OTHERSTATIONARYCOMB | — GNFR_G_SHIPPING |
|--------------------|----------------------------|-------------------|
| GNFR_B_INDUSTRY    | GNFR_F_ROADTRANSP          | - GNFR_H_AVIATION |

## Relative Differences – Annual NOx emissions 2020-2018





### **Observations**



v Tecnológicas

#### **Model performance**

Acceptability criteria of Chang and Hanna (2004):

- FAC2 ≥ 0.5
- |FB| ≤ 0.3
- NMSE ≤ 1.5



GOBIERNO DE ESPAÑA MINISTERIO DE CIENCIA. INNOVACIÓN Y UNIVERSIDADES Centro de Investigaciones Energéticas. Medioambientales y Tecnológicas



08169009 : BARCELONA : El Prat de Llobregat (CEM Sagnier) (SUBURBANA FONDO) 03



#### 28065014 : MADRID : GETAFE ( URBANA TRAFICO ) NO2



#### Relative Differences [15/03-30/04] O3 MDA8 Maximum daily 8-hourly value (mean for the period)

Methodology A



Not an exact comparison (mean of 4 years for • observations; some smoothing could occur)



0



- The model estimates increases in ozone in the same areas where an increase is observed at at least one location
- Model probably overestimates areas with increases due to model resolution (~5x5km2)

Ciemat

Energéticas, Medioambiental y Tecnológicas

 Was an abnormally cloudy and rainy period and so this period in 2020 would be expected to have lower concentrations than the mean values

#### Impact of NO-titration reaction, July, 2016





#### Relative Differences [2020] O3 SOMO35

#### **Methodology B**









Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

#### **O3 Relative Differences ANNUAL MEAN**



GOBIERNO DE CENCIA, INNOVACIÓN Y UNIVERSIDADES CENTRA LA CONTRACTÓR CENTRA DE CENCIA, INNOVACIÓN Y UNIVERSIDADES

### Impacts on ozone

Ozone levels in 2020: compliance with the air quality directives



Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas *Figure extracted from the "Informe sobre el estado del clima de España 2020. Resumen ejecutivo. Agencia estatal de meteorología, AEMET"* Source: CM SAF (EUMETSA T).



Figure extracted from the "Informe sobre el estado del clima de España 2020. Resumen ejecutivo. Agencia estatal de meteorología, **AEME**T"



Accumulated Precipitation Percentage in 2020 with respect to the 1981-2020 mean value





Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

#### Effect of Spain emissions on annual 2016 ozone maxoct in rest of Europe



Effect of biogenic emissions on annual 2016 ozone maxoct in Spain





 $O_3$  AOT40 (( $\mu g/m^3$ )h) : average 2015-2019



#### **Further studies**:

•

-20

- Isolate meteo and emission effects
- A contribution of sources for 2020
- A complete study coupling with global model

Effect of shipping emissions on annual

**Higher resolution** 





175

25





## Decrease of SOx (and NOx) emissions drove increases in NH<sub>3</sub> concentrations







# Decrease of SOx (and NOx) emissions drove increases in NH<sub>3</sub> concentrations (model results)







# Decrease of SOx (and NOx) emissions drove increases in NH<sub>3</sub> concentrations

# Can also be seen in the observed concentrations at EMEP sites

Data coverage criteria:

Sites used with:

- ≥ 75% of period with valid data
- At least 3 years with valid data for 2016-2019

% Change in NH<sub>3</sub> concentrations with respect to mean 2016-2019 (mostly increases)

% Change in NH<sub>4</sub><sup>+</sup> concentrations with respect to mean 2016-2019 (mostly decreases)





#### Summary

- All methods (observations and/or models) to estimate the impact of lockdown on air quality have considerable uncertainty
- The model estimates increases in ozone in the same areas where an increase is observed at at least one location (NO-titration areas)
- Model probably overestimates the extension of the areas with increases due to model resolution (~5x5km2)
- NOx emission reductions increased mean and MDA8 O3 concentrations in some NOx source areas of Spain
- They also increased human health impacts of ozone (SOMO35) in urban areas although impacts from NO2 will have decreased
- Ozone impacts to vegetation (AOT40) decreased for most of Spain, especially in the east (climate, shipping...). Difficult to decrease in Southern Spain (climate...)
- Reductions of SOx (and NOx) emissions probably produced increases in NH3 concentrations across most of Europe



# Thank you

#### **Aknowledgments:**

- Ministry for the Ecological Transition (MITERD) for providing emissions, observations and financial support
- AEMET for access to MARS (ECMWF, IFS meteorological data)
- Marc Guevara for providing emissions reductions until 31/07/2020



**Retos-AIRE**: Ai**R** pollution mitigation actions for Environmen**T**al p**O**licy **S**upport. **AIR** quality multiscale modelling and evaluation of hEalth and vegetation impacts **RTI2018-099138-B-100 Plan Nacional I+D+i** <u>www.retos-aire@ciemat.es</u>

- Carlos Ordóñez a,\*, Jose M. Garrido-Perez a,b, Ricardo García-Herrera (2020), Early spring near-surface ozone in Europe during the COVID-19 shutdown: Meteorological effects outweigh emission changes Science of the Total Environment 747 (2020) 141322
- **Guevara, M.,** Jorba, O., Soret, A., Petetin, H., Bowdalo, D., Serradell, K., Tena, C., Denier van der Gon, H., Kuenen, J., Peuch, V.-H., and Pérez García-Pando, C.: Time-resolved emission reductions for atmospheric chemistry modelling in Europe during the COVID-19 lockdowns, Atmos. Chem. Phys., 21, 773–797, <u>https://doi.org/10.5194/acp-21-773-2021</u>, 2021
- Alejandro Rodríguez-S´anchez \*, Marta G. Vivanco, Mark Richard Theobald, Fernando Martín. Estimating the effect of the COVID-19 pandemic on pollutant emissions in Europe. Atmospheric Pollution Research 13 (2022) 101388
- Vivanco MG, Garrido JL, Martín F, Theobald MR, Gil V, Santiago J-L, Lechón Y, Gamarra AR, Sánchez E, Alberto A, Bailador A, 2021. Assessment of the Effects of the Spanish National Air Pollution Control Programme on Air Quality. Atmosphere, 12(2), 158. Enlace: <a href="https://doi.org/10.3390/atmos12020158">https://doi.org/10.3390/atmos12020158</a>.
- Gamarra AR, Lechón Y, Vivanco MG, Garrido JL, Martín F, Sánchez E, Theobald MR, Gil V, Santiago JL, 2021. Benefit Analysis of the 1st Spanish Air Pollution Control Program on Health Impacts and Associated Externalities. Atmosphere, 12(1), 32. Enlace: <a href="https://doi.org/10.3390/atmos12010032">https://doi.org/10.3390/atmos12010032</a>.