

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Modelling activities towards the design of ozone mitigation strategies in Spain

<u>O. Jorba</u>, H. Petetin, M. Guevara, R. Garatachea, F. López, S. Enciso, K. Oliveira, C. Pérez-García Pando (BSC)

In collaboration with: X. Querol, J. Massagué (IDAEA-CSIC) G. Gangoiti (UPV) E. Mantilla (CEAM) E. Monfort (ITC) M.J. Alonso, F. Pérez-Ilzarbe (MITERD)

23nd EMEP Task Force on Measurement and Modelling Meeting

03/05/2022

- Background and motivation: O₃ plan for Spain
- Modelling tools
- Source Apportionment of O3 in Spain
- Ozone Plan: emission scenarios and base case run

Background and Motivation

Sources: Millán et al., 1997, 2000, 2014; Gangoiti et al, 2001, 2002, 2006; Toll and Baldasano, 2000

O₃ Trends and exceedances

Source: Querol et al. (2016).

Open questions:

- What are the key sources responsible for the high O₃ concentration in Spain?
- Can administrations implement control strategies that are effective to reduce high O₃ concentration?

O₃ plan for Spain

- Advancing our understanding of key processes controlling tropospheric O₃ formation and development of episodes combining monitoring and modelling techniques:
 - Role of emission sectors (source apportionment techniques)
 - NOx/VOCs regimes

Barcelona

Supercomputing

- Better understanding of NMVOCs O₃ formation potential
- Understanding foreign contributions (source apportionment techniques)
- Designing emission reduction scenarios
 - New emission inventory for 2019 based on MITERD information
 - Emission scenario of MITERD planned mitigation measures
 - Emission scenario of further specific measures: sensitivity runs .
- Multi-model air quality modelling at high-resolution
- Scientific recommendations for MITERD O₃ plan

Modelling tools

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Modelling

tools

In-house model developments

MONARCH model

Multiscale Online Nonhydrostatic Atmosphere Chemistry model

- Multiscale: global to regional (up to 1km) scales allowed
- Fully on-line coupling: weather-chemistry feedback processes allowed
- Enhancement with a *data assimilation* system and machine learning
 technicuum

HERMESv3 emission model

A **python-based**, **open source**, **parallel and multiscale** emission modelling framework that **processes and estimates gas and aerosol emissions** for use in atmospheric chemistry models.

Guevara et al. (2019, 2020)

HERMESv3 Bottom Up Model

An **emission model** to estimate emissions at the source level (e.g. road link) combining state-of-the-art **bottom-up methods** with **local activity, emission factors and meteorology**

Multiple sources of information

NO_x, CO, SO₂, NMVOC, NH₃, PM₁₀, PM_{2.5}

Guevara et al. (2020)

Source apportionment of O₃ in Spain: country and sector level

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Country vs foreign contributions

Important hemispheric contribution - vertical mixing processes

Barcelona Supercomputing Center Centro Nacional de Supercomputación

CMAQ-ISAM SA system

2015-2016-2017 MJJAS Mean MDA8 O₃

Garatachea et al. (2022 in prep)

Source-sector regional contribution

Pay et al. (2019 ACP)

CMAQ-ISAM SA system

NOx/VOCs tagged

sources

Daily mean contribution during MDA8 > 120 μ/m^3

O₃ plan for Spain: emission scenarios and baseline modelling results

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Emission scenarios

Scenario	Description	Key sectors	Period model runs		
Baseline (EB)	Reference year 2019, combine HERMESv3 (BSC bottom-up emissions for Spain) + MITERD (LPS, PRTR-Spain, fleet composition, official use of solvents)	All	April – September 2019 / 2015 (impact warmer meteorology)		
Planned MITERD measures (EP)	EB + measures considered in national MITERD plans (emission reduction consistent with projected data 2030 CLRTAP)	On-road transport, Energy industry, Manufacturing industry, Solvents use, Shipping	April – September 2019 / 2015 (impact warmer meteorology)		
Additional specific measures (EE)	EP + additional emission reduction measures not planned and tailored to reduce O ₃ (sensitivity tests)	On-road transport, Energy industry, Manufacturing industry, Solvents use, Shipping	July month, focus regional air basins with O ₃ issues		

Barcelona

ro Nacional de Supercomputación

Center

Baseline scenario

- **Spain**: HERMESv3 (Guevara et al., 2020) bottom-up high resolution emissions
 - Reduction of the inconsistency with official Spanish NOx and NMVOC emissions by integrating the following national datasets into the HERMESv3 system:
 - LPS and PRTR Spain point source emissions
 - Vehicle fleet composition profiles per province
- Other countries + shipping: CAMS-REG-AP_v4.2 inventory (Kuenen et al., 2022)

Baseline scenario

Detailed spatial and temporal distribution of emissions

NOx annual industrial emissions

NOx annual traffic emissions

NOx monthly industrial emissions (per branch)

NOx/NMVOC daily traffic emissions (Madrid city)

Scenario with Planned Measures

Implementation in HERMESv3 of emission changes reported by the **official projections data under the CLRTAP** (very complex process due to aggregation level of reporting)

Limitation -> Projected increase of NMVOC from biomass power plants cannot be included as location of facilities is still unknown (emissions for reporting vs. emissions for modelling)

		Projected emissions (kt)				Projected emissions (kt)					
		NOx				NMVOC					
		Guidelines Reporting Years				Guidelines Reporting Years					
NFR Code	Longname	2019	2020	2025	2030	DIFF	2019	2020	2025	2030	DIFF
1A1	Energy industries (Power plants & Energy Production)	55.6	53.9	47.0	38.9	-30%	10.3	10.6	11.2	12.9	26%
1A2	Manufacturing Industries and Construction (Combustion including Mobile)	110.8	106.4	84.0	76.8	- 31%	20.8	20.8	21.0	21.4	3%
1A3b Road Transport		211.2	207.1	175.5	82.7	-61%	20.2	21.1	25.0	23.2	15%
1A3bi	R.T., Passenger cars	126.5	124.0	99.6	16.1	-87%	5.3	5.2	4.8	5.4	3%
1A3bii	R.T., Light duty vehicles	22.3	21.9	18.7	16.6	-25%	0.4	0.4	0.3	0.3	-27%
1A3biii	R.T., Heavy duty vehicles	60.5	59.1	54.3	47.7	-21%	1.3	1.2	1.2	1.1	-16%
1A3biv	R.T., Mopeds & Motorcycles	1.9	2.1	2.8	2.3	18%	11.4	12.3	16.6	13.5	19%
1A3bv	R.T., Gasoline evaporation	NA	NA	NA	NA		1.8	2.0	2.0	2.9	60%
1A3d	National navigation (Shipping)	40.8	35.8	24.0	23.2	-43%	1.8	1.7	1.3	1.4	-25%
2D, 2G	Solvent & other product use	0.1	0.1	0.1	0.1		257.6	256.9	248.8	244.5	-5%

Scenario with Planned Measures

Heterogeneous impact across sources:

- Shut down of coal fired power plants vs. increase of emissions natural gas power plants
- Urban areas: heavy reduction of NOx and slight increase of NMVOC

NMVOC Absolute differences EP 2030 - EB 2019 (Spain) - SNAP 07 Road transport

Specific measures: NMVOCs emissions ozone formation potential

• To obtain the NMVOC speciated inventory and to calculate the Ozone Formation Potential (OFP):

$$E_i = \sum_j E_j \times R_{ij}$$

BSC Barcelon Supercol Center Centro Naci

Barcelor Supercol Center Centro Naci Barcelor Supercol Center Centro Naci Barcelor Source, is the total emission of the species i, is the total emission of the source j, and is the ratio of species i to source j

$$OFP_i = \sum_j E_{ij} \times MIR_i$$

where OFP_i is the total ozone formation potential of species i, E_{ij} is the emission of the species i for source j, and MIR_i is the maximum increment reactivity of species i (g O₃ / g VOC).

Agricultural waste burning

Air quality Models and setup

- 2 models (robustness in sensitivities and model uncertainty): WRF-CMAQ, MONARCH
- Same anthropogenic emissions: CAMS-REG-ANT-v4.2 (Europe), HERMESv3 bottom-up (Spain)
- Period of study April-September 2019 (focus June-July-August)

Model	CMAQ	MONARCH				
Domains	Europe (12km)/Spain (4km) Lambert Conformal Conic	Europe (20km)/Spain (5km) Rotated latitude-longitude				
Domains	37 vertical layers (top 50 hPa)	24 vertical layers (top 50 hPa)				
Meteorology (BC)	WRFv3.5 (FNL)	NMMB (ERA5)				
Chemistry (BC)	CMAQv5.0.2 CB05 + AERO6 (CAMS)	Online CB05 + BSC aerosols (CAMS)				
Natural emissions	MEGAN (biogenic)	MEGAN (biogenic) + GFAS				

General statistics – comparison reference CTMs

CMAQ	MB	nMB	RMSE	nRMSE	PCC	slope	nMSDB	Ν	Mo	Mm
h	18.97	25.99	28.80	39.47	0.69	0.51	-26.56	586669	72.98	91.94
d	18.94	25.96	24.15	33.09	0.66	0.54	-18.88	24478	72.98	91.92
d1max	9.67	9.32	20.84	20.10	0.69	0.53	-23.70	24478	103.69	113.36
d8max	11.28	11.65	20.20	20.86	0.68	0.50	-25.40	24149	96.86	108.14
MONARCH	MB	nMB	RMSE	nRMSE	PCC	slope	nMSDB	Ν	Mo	Mm
h	5.03	6.89	24.43	33.47	0.62	0.48	-23.03	586669	72.98	78.00
d	4.97	6.81	16.36	22.42	0.63	0.49	-21.24	24478	72.98	77.95
d1max	-0.58	-0.56	19.18	18.50	0.67	0.53	-20.90	24478	103.69	103.11
d8max	-0.05	-0.05	16.53	17.07	0.69	0.52	-24.75	24149	96.86	96.81
EMEP	MB	nMB	RMSE	nRMSE	PCC	slope	nMSDB	Ν	Mo	Mm
h	5.64	7.77	22.78	31.38	0.68	0.41	-39.51	541924	72.61	78.25
d	5.65	7.79	16.86	23.22	0.59	0.35	-40.20	22605	72.59	78.25
d1max	-6.85	-6.64	20.98	20.33	0.63	0.37	-41.86	22605	103.23	96.38
d8max	-3.03	-3.15	17.83	18.55	0.64	0.38	-40.53	20987	96.15	93.12
CHIMERE	MB	nMB	RMSE	nRMSE	PCC	slope	nMSDB	Ν	Mo	Mm
h	16.65	22.85	26.73	36.68	0.72	0.55	-23.96	580417	72.89	89.54
d	16.64	22.84	22.71	31.15	0.61	0.41	-32.96	24217	72.89	89.53
d1max	8.58	8.28	20.65	19.94	0.67	0.43	-36.10	24217	103.61	112.18
d8max	12.41	12.83	20.89	21.60	0.66	0.43	-35.22	23637	96.71	109.11

BSC

Temporal series O₃ monitoring stations

Summary

- Ongoing work towards the design of specific measures to reduce the O₃ problem in Spain
- Spain O₃ has significant local contribution compared with other EU states
- Characteristic contribution from vertical mixing (deep convective PBL during summer)
- Updated 2019 emission inventory for modelling applications and designing emission mitigation scenarios focus on NMVOCs OFP
- Two models with complementary behaviour and sensitivities (positive for robustness)
 - CMAQ: systematic positive bias with better representation of ozone peaks
 - MONARCH: better daily cycle with underestimation of maximum peak values
 - Local/regional air basins well captured by two models
- Next steps: modelling emission scenarios

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thank you!

This work is supported by the Ministerio para la Transición Ecológica y el Reto Demográfico.

VICEPRESIDENCIA TERCERA DEL GOBIERNO MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA Y EL RETO DEMOGRÁFICO

oriol.jorba@bsc.es