

Multi-model assessment of PM level changes over 1990-2010

Highlights from ED Trends study

On behalf of EDT Team presented by Svetlana Tsyro

TFMM 18-th meeting Prague (CZ) May 3-5, 2017

Presentation Scope

Components: **PM₁₀, PM_{2.5}**

Periods:

- 2001-2010 5 (6) models & PM observations
- 1990-2000-2010
 8 models
- Methods/tools
 - EMEP, CHIMERE, LOTOS-EUROS, MATCH, MINNI, WRFF (around the corner) for 1990 – 2010 (+ with 2010 emissions)
 - above & CMAQB, POLYPHEMUS (WRFC)

for 1990, 2000, 2010 (+ 2010 meteorology)

- EMEP observations (ebas): trend-sites 29 for PM10, 18 for PM2.5
- Mann Kendall test to detect the trend (significance level 0.1)
- Theil-Sen's slope
- Questions

Summary

- Can we see significant trends from model results? Observations?
- How well the models reproduce observed trends? (Dis-) Agreements between the models?
- Geographical differences? Seasonal differences?
- Model calculated decadal differences to assess PM level changes
- effect of meteorology/ emissions, natural contribution,..??

PM10 and PM2.5 trends in 2001-2010 from 5-model ensemble and observations

PM25_MKslope_sign_2001-2010_Yearly_mean5mod [ug/m3]

μg m-3/yr

%/yr

PM25_MKslope_sign_2001-2010_Yearly_mean5mod %

Modelled and observed PM10 trends in 2001-2010

Note rather irregular spatial coverage by Obs - has to be kept in mind when regarding the finding/conclusions

WRFF

Modelled and observed PM2.5 trends in 2001-2010

MATCH

WRFN

Annual mean series of PM₁₀ and PM_{2.5} from 2001 to 2010, averaged over 29 and 18 sites

²⁴ Average annual mean concentrations of PM₁₀ from 29 sites and PM_{2.5} from 18 sites Solid lines: Observations. Dotted lines: Ensemble of 5 models.

Mean PM₁₀ trends at trend-sites (µg m⁻³yr⁻¹) Period: 2001-2010

Mean PM_{2.5} trends at trend-sites (µg m⁻³yr⁻¹) Period: 2001-2010

Obs - black

*) sites with observed significant trends

Seasonal mean trends in 2001-2010

PM2.5

Mean seasonal trends in 2001-2010 (trend-sites)

Seasonal mean PM_{10} and $PM_{2.5}$

Average seasonal mean concentrations of PM₁₀ from 29 sites and PM₂₅ from 18 sites Solid lines: Observations. Dotted lines: Ensemble of 5 models. Darker colours: PM₁₀. Lighter colours: PM_{2.5}. Grey lines: Sen slopes.

PM10 trend (ug/m3/yr) Obs CHIM EMEP LOTO MINNI MATCH WRFN 0 -0,1 -0.2 -0,3 -0,4 -0,5 -0,6 winter spring summer autumn

PM2.5 trend (ug/m3/yr)

-0,7

Spring

Autumn

Norwegian Meteorological Institute

Relative contributions of (downwards) SO₄, NH₄, NO₃ and primary PM to PM₁₀ trends

CHIM

LOTO

MATCH

MINNI

Relative contributions of natural aerosols to PM₁₀ trends

Results from CHIM, EMEP, LOTO, MINNI, MATCH

Relative effects on PM trends (2001-2010) due to emission changes and meteorological variability Sen (Tier3A-Tier3B) / STD(Tier3B)

2001-2010_MKslope_EMvsMET_PM10_YearlyEMEP

2001-2010_MKslope_EMvsMET_PM10_YearlyLOTO

2001-2010_MKslope_EMvsMET_PM10_YearlyMATCH

PM2.5

2001-2010_MKslope_EMvsMET_PM25_YearlyEMEP

2001-2010 MKslope EMvsMET PM25 YearlyLOTO

2001-2010_MKslope_EMvsMET_PM25_YearlyMATCH

Norwegian Meteorological Institute

0 -0.1 -0.25 -0.5 -0.75 -1

PM₁₀ trend slope for 1990-2010 absolute (µg m3 yr-1) and relative to 1990 (perc m-3 yr-1)

PM₁₀ trend slopes for 1990-2000 and 2000-2010 (μg m-3 yr-1)

PM_{2.5} trend slope for 1990-2010 absolute (µg m3 yr-1) and relative to 1990 (perc m-3 yr-1)

PM₁₀ trend slopes for 1990-2000 and 2000-2010 (μg m-3 yr-1)

PM10 change (μg m-3 yr-1) from diffs <u>1990-2010</u> (2010 meteorological conditions)

MATCH rendAve_2010met_MATC_1990-2010_PM10 [ug/m3/yr]

CMAQB TrendAve_2010met_CMAQ_1990-2010_PM10

[ug/m3/yr]

TrendAve_2010

For comparison: PM10 trend from EMEP 1990-2010

-0.2 -0.5 -0.75 -1 -1.5 -1.75

Good overall correspondence between the models; PM changes per year derived from 1990-2010 differences are larger compared to average trendsorwegian Meteorological

SUMMARY

- On average, the models underestimate PM10 by 14%, PM2.5 by 11% (+/-5-10% variation)
- The model results are quite consistent in terms of mean trends over Europe, though some differences exist
- □ Compared to observations, the models calculate significant PM10 and PM2.5 trends in 2001-2010 for more regions/sites, but the modelled trends are on average smaller: MOD -0.31 and -0.28; OBS= -0.42 and 0.41 µg m⁻³ yr⁻¹
- Somewhat larger differences between model calculated trends for individual PM components (PM composition change)
- PM trends are largest in summer and smallest in winter observations and models agree
- Significant reduction of emission reduction effect on PM trends due to interannual meteorological variability
- PM trends vary in EMEP countries and source regions (largest C. Europe, smaller S/E and N. Europe)
- Differences based on model results for 1990, 2000 and 2010 are applied to estimate PM level changes (calculations with constant meteorology)

Děkuji za pozornost Děkuji všem za vaši pozornost

Relative annual variability of PM2.5 (STD/Mean) due to meteorological variability

Mean PM trends (in % per year) relative to the PM level in 1990

EMEP

1990-2010_MKslope_sign_PM10_Yearly_EMEP

1990-2010_MKslope_sign_PM25_Yearly_EMEP

MINNI

