18th Task Force on Measurement and Modelling Meeting

MARGA at the TROPOS/EMEP site Melpitz (Germany) – long-time measurements, validation, source apportionment and further developments since 2010

<u>B. Stieger¹</u>, G. Spindler¹, A. Grüner¹, K. Müller¹, L. Poulain¹, M. Wallasch², H. Herrmann¹

> ¹ Leibniz Institute for Tropospheric Research (TROPOS), Leipzig ² German Federal Environment Agency (UBA), Dessau-Roßlau

04.05.2017

stieger@tropos.de

MARGA measurement site and principle

Measurement site Melpitz

MARGA measurement principle – Sampling

MARGA – Monitor for AeRosols and Gases in ambient Air

MARGA measurement principle – Analysis

MARGA – Monitor for AeRosols and Gases in ambient Air

MARGA measurement principle – Analytes

gas phase	particle phase
hydrochloric acid (HCI)	chloride (Cl ⁻)
nitrous acid (HONO)	nitrate (NO ₃ -)
nitric acid (HNO ₃)	sulphate (SO ₄ ²⁻)
sulphur dioxide (SO ₂)	sodium (Na+)
ammonia (NH ₃)	ammonium (NH ₄ +)
	potassium (K+)
	magnesium (Mg ²⁺)
	calcium (Ca ²⁺)

Gas phase comparison

MARGA gas phase comparison

- Very good for SO₂
- Large scattering for HONO

- \rightarrow Sticky gas
- \rightarrow Interactions with MARGA inlet

Particle phase comparison

MARGA vs. ACSM

MARGA vs. PM₁₀ filter

Filter measurements offer widespread analysis of particle phase

(b)

25

30

(d)

12 14

Only daily values for main inorganic compounds

- slightly higher concentrations on filter
- Filter measure gas and particle phase
- Occurance of artifacts for filter measurements
- Evaporation of volatile ammonium nitrate in summer

MARGA measurements

a) Long-time series

Long-time series - Gases

Long-time series – Main PM ions

Long-time series – Non-NH₄⁺ cations

stieger@tropos.de

MARGA measurements

b) Temporal variations of gases

Temporal variations of gases – SO₂ and HCI

- Highest concentrations in winter
- → Anthropogenic origin
- Noontime peak
- → Transport in higher layers + down-mixing in the morning

- Source are surface reactions of H₂SO₄ and HNO₃ on sea salt aerosol
- Evaporation of volatile ammonium chloride for high temperutes

MARGA measurements

c) Source apportionment of particulate ions

Sources of the PM ions - chloride

Sources of the PM ions – nitrate

NO₃ winter 0.2 0.25 0.3 0.10.15 0.35 0.4 0.45 0 0.05 **PSCF** probability

• Anthropogenic source in winter

NO₃ summer

- Anthropogenic source
- Chloride-nitrate-exchange in sea salt particles

Sources of the PM ions – nitrate

- Anthropogenic source in winter
 Anthropogenic source
 Highest concentrations for cold temperatures (compusition)
 - Volatilization for high temperatures (ammonium nitrate) sea salt particles

Sources of the PM ions – sulphate

sulphate \rightarrow anthropogenic pollutant

- Highest concentration for low temperatures
- → Domestic heating in winter

- More sulphate for high pressure
- → High pressure favours the formation of an inversion layer (enrichment)
- → Sibirian high pressure system (winter) leads to transport from east to west
 TROPOS

Sources of the PM ions – sulphate

Transport of sulphate in form of ammonium sulphate from east europe
 → Thermically stable salt

Bastian Stieger stieger@tropos.de TROPOS

Sources of the PM ions – sulphate

Transport of sulphate in form of ammonium sulphate from east europe

 \rightarrow Thermically stable salt

TROPOS

Analytical extension for carboxylic acid measurements

Detection of carboxylic acids - Extension

MARGA

Take the gas and particle phase solutions

Autosampler

- 1. Sample of gas and particle phase solutions
- 2. Injection to the IC

→ Time resolution of 2 hours

Compact-IC

Carboxylic acid analysis after inline pre-concentration

System evaluation

System evaluation

Acetic acid

Carboxylic acids – First results and outlook

- In autumn and winter only formic, acetic and glycolic acid detectable
 - Formic and acetic acid dominant in gas phase
 - Glycolic acid in autumn and winter in particle phase
 - Glycolic acid in spring predominantly in gas phase (temperature influence?)
- Since spring more monocarboxylic acids (pyruvate, propionate, butyrate)
 - Possibly influenced by biological activity and photochemistry
- Rarely detection of oxalic acid in particle phase
 - > Only detected during anthropogenic pollution events in winter
- Further measurements in spring and summer 2017
- Investigation of gas-particle-distribution
- Investigate reaction mechanism

Summary

Summary

- Monitor for AeRosols and Gases in ambient Air (MARGA)
 → In Melpitz, Germany, since 2010
 → Continuously measurements of inorganic ions in the gas and particle phase
- Advantages towards the standard PM₁₀ filter measurements (higher time resolution, online system, gas measurement) and the ACSM
- Agreement with PM₁₀ filter, ACSM and SO₂ gas monitor measurements in Melpitz
- Local sources for gases
- Investigations on sources of the particulate ions
 - Input: combination of MARGA data, meteorological data and HYSPLIT backward trajectories
 - → Transport as an important contributor to the measured concentrations of the main particulate ions
- Extension for the investigation of short-chain mono- and dicarboxylic acids
 - Measurements since autumn 2016
 - Investigation of gas-particle-distribution and reaction mechanism

Thank you for your attention

