

Sampling and Chemistry of Size Segregated Aerosols Urs Baltensperger Laboratory of Atmospheric Chemistry Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

TFMM workshop Oslo, 22–24 November 2004

Aerosol parameters relevant to climate forcing

(suggestions by the GAW Scientific Advisory Group for Aerosols)

•Continuously:

- Multiwavelength optical depth
- Mass in two size fractions
- Major chemical components in two size fractions
- Scattering and hemispheric backscattering coefficient at various wavelengths
- Absorption coefficient
- Aerosol number concentration
- Cloud condensation nuclei at 0.5% supersaturation
- Diffuse, global and direct solar radiation
- Intermittently:
- Aerosol size distribution
- Detailed size fractionated chemical composition
- Dependence on relative humidity
- CCN spectra (various supersaturations)
- Vertical distribution of aerosol properties

LABOR FÜR ATMOSPHÄREN-CHEME

Can be downloaded from WMO website: enter WMO GAW into Google

or from EMEP website

WORLD METEOROLOGICAL ORGANIZATION GLOBAL ATMOSPHERE WATCH

No. 153

WMO/GAW

AEROSOL MEASUREMENT PROCEDURES

GUIDELINES AND RECOMMENDATIONS

September 2003

The GAW recommendations

- ,Standard ions': Sulfate, nitrate, chloride, sodium, ammonium, potassium, magnesium, calcium: teflon filter
- Special care for nitrate and ammonium: Nitrate: teflon/nylon filterpack behind a denuder to remove HNO₃ Ammonium: correct for NH₄NO₃ loss from teflon filter
- Elements: teflon filter
- Carbon: quartz filter

Sampling and extraction issues from nylon filters (ION SPECIAL STUDIES in the IMPROVE program)

- Does water efficiently extract nitrate from nylon filters?
 - HNO₃ not efficiently recovered with water extraction?
 - use H_2O or $NaHCO_3/Na_2CO_3$?
- What happens to NH₄NO₃ volatilized from nylon filters?
 - HNO₃ trapped? Decrease in water extraction efficiency?
 - NH₃ lost? Bias in measured PM_{2.5} ammonium?

Courtesy: Bill Malm, IMPROVE

NO₃⁻ extraction on nylon

- Nylon filter extraction by water showed no bias in first three studies
- San Gorgonio July experiment will be repeated this summer

Courtesy: Bill Malm, IMPROVE

Filter materials used in the Melpitz intercomparison

Sampler type	Upper cut size	Filter material (pore size)	Weighing protocol	Operated by	
SFU	PM10	Nuclepore, 8 µm	20 °C, 50% rel. hum.	UGent	
SFU	PM2	Nuclepore, 0.4 µm	id.	UGent	
SFU	PM2	Teflon, 2 µm	id.	UGent	
SFU	PM2	Millipore mixed cellulose ester, 3 µm	id.	UGent	
Gent	PM2.5	Quartz fibre Whatman QM-A	id.	UGent	
Gent	PM10	id.	id.	UGent	
TSP	n.a.	id.	id.	UGent	
TEOM 1400A	PM2.5	n.a.	n.a.	UGent	
Digitel DHA-80	PM2.5	Quartz fibre, Munktell MK360	20°C, 50%	Leibnitz Institute for Tropospheric Research Leipzig (IfT)	
Sierra-Anderson	PM10	Quartz fibre Whatman QM-A	id.	IfT	
Digitel DHA-80	PM2.5	Quartz fibre, Munktell MK 360	id.	BTU Cottbus, Berlin	
TSP	Ca. 80 µm	Polycarbonate, 0.2 µm	20-22°, 30-40% rel. hum.	UniV	

Upper cut sizes as well as substrate types are given. All stacked filter unit (SFU) samplers had the same kind of front filter (PM10) which is given only once. n.a., Non applicable. id., Same as above.

Sulfate intercomparison Melpitz

Ammonium intercomparison Melpitz

Nitrate volatilisation from quartz fiber filters

Nitrate in Big Bend

Chemical composition of the Jungfraujoch aerosol

Coarse aerosol fraction (annual mean)

Fine aerosol fraction (annual mean)

Size distributions of sulfate and calcium at the Jungfraujoch

Diurnal variation of nitrate in the gas and aerosol phase in March 2003

Size resolved measurements of elemental ambient concentrations with RDI/SXRF

• High relevance for source apportionment of elemental air pollutants

2

3

9

Transition energy (keV)

10 11

12

0.25 0.125 0.0625 PAUL SCHERRER INSTITUT

Ē

__

Element	Mass concentration RDI Stage A (2.5-10 µm) (ng m ⁻³)			Mass concentration RDI Stage B (1-2.5 μm) (ng m ⁻³)		Mass concentration RDI Stage C (0.1-1 µm) (ng m ⁻³)			Minimal detect- ion limit (MDL)	Relative methodo -logical error	
										(lig lil ²)	(%)
	0.25	Aver-	0.75	0.25	Aver-	0.75	0.25	Aver-	0.75		
	perc	age	perc	perc	age	perc	perc	age	perc		
S	164	388	516	90.2	216	269	32.6	253	346	0.310	34
Cl	37.0	297	328	9.71	37.6	39.6	2.40	4.86	5.68	0.091	24
Ca	79.7	220	282	27.5	51.5	60.1	7.12	11.3	13.5	0.038	10
Cr	3.58	10.2	14.1	1.52	3.91	5.11	0.252	0.672	0.878	0.029	14
Mn	6.42	16.8	22.6	2.25	5.37	7.45	0.420	1.08	1.43	0.027	13
Fe	544	1371	1847	167	409	576	24.7	68.3	89.3	0.042	10
Cu	22.6	57.6	72.5	7.90	21.2	27.1	1.34	3.64	4.46	0.019	10
Zn	10.3	25.0	33.0	5.00	12.1	15.8	1.38	4.07	5.48	0.014	11
Br	0.092	0.252	0.311	0.027	0.118	0.162	0.021	0.227	0.343	0.016	25
Pb	1.42	3.89	4.78	0.727	1.77	2.22	0.238	0.827	1.22	0.088	11

Labor für Atmosphären-Chemie

6

Paul Scherrer Institut • 5232 Villigen PSI

Comparison of RDI/SXRF and HiVoI/XRF

Conclusions

- Teflon/nylon filterpacks behind denuder is safest option
- 1 μ m size cut is better suited for source apportionment, but we also accept a 2.5 μ m (dry) cut
- Cascade impactor measurements are a research topic and not suitable for monitoring (work load!)
- RDI/SXRF has the potential for routine applications (as done in IMPROVE program), with high sensitivity
- 24-averages are not suited for process studies