

Linking local to global scales in modelled PM_{2.5} source apportionment in GAINS

Gregor Kiesewetter Air Quality and Greenhouse Gases Program IIASA Laxenburg, Austria

20th TFMM Meeting, Madrid, 8 May 2019

IIASA, International Institute for Applied Systems Analysis

Source apportionment in GAINS-Europe

- Fusion approach combining model and observations, mainly following the Lenschow approach
- Source attribution covers ~1900 AirBase stations
- Data heavy not feasible in other world regions

GAINS model global extension

- Emission calculations have been global: currently 170 regions
- Recent development: atmospheric transfer calculations extended to global domain
- European calculations unchanged: EMEP 0.25°x0.5° + "7km" downscaling based on CHIMERE
- Resolution outside Europe: 0.5^o + downscaling 0.1^o
- Methodology: Perturbation simulations (brute-force) with EMEP global CTM
- EMEP model simulations:
 - Base case simulation 0.5°
 - 15% reduction for each precursor pollutant of PM_{2.5} and source region 0.5°
 - 15% reduction run for low-level emissions of PPM for each source region, to take account of the different dispersion behavior of near ground PPM sources
 - Base case simulation 0.1° with refined residential emission gridding pattern
 - Urban 30% reduction simulation (all pollutants) 0.1° with refined residential emission gridding pattern

GAINS model global extension

- Emission calculations have been global: currently 170 regions
- Recent development: atmospheric transfer calculations extended to global domain
- European calculations unchanged: EMEP 0.25°x0.5° + "7km" downscaling based on CHIMERE
- Resolution outside Europe: 0.5° + downscaling 0.1°
- Methodology: Perturbation simulations (brute-force) with EMEP global CTM
- EMEP model simulations:

 Base case s 	\Rightarrow Source-receptor coefficients for ambient PM _{2.5} from:	
 – 15% reduction 	PPM _{2.5} urban low-level / rural low-level / other	egion 0.5°
 15% reduction account of the second s	SO ₂ urban low-level / other NO _x urban low-level / other NH ₃	e region, to take sources
 Base case si 	NMVOC	ing pattern
 Urban 30% r aridding patt 	From each GAINS region to 0.1° / 0.5° grid	residential emission

Emission re-gridding

- Global gridded emissions from GAINS usually at 0.5° resolution
- For finer resolution modelling, gridded emissions are needed at higher resolution, which are not necessarily available everywhere
- Mainly of interest for higher resolution: low-level emissions (residential combustion, traffic, waste burning)
- Fine scale proxy available globally: high-resolution population (JRC 250m, worldpop 100m)
- Access to clean residential fuels differs strongly between urban and rural areas: Information on urban/rural residential fuel use from WHO household database
- Identification of urban areas >100,000 inhabitants: GRUMP dataset \Rightarrow ~5,000 cities
- Re-gridded residential emissions at 0.1° with urban-rural distinction
- Allows for the generation of dedicated urban low-level source-receptor coefficients (PPM, NO_x, SO₂)

Global cities > 100.000 inhabitants

Total base case PM2.5 (0.1° resolution)

Annual mean, 2015 emissions & meteorology

Validation (not really)

Delta from urban 30% reduction

Delta from urban 30% reduction: PPM share

Delta from urban 30% reduction: PPM vs SIA

Source apportionment for cities (preliminary!)

All cities within the respective GAINS region (province/country) averaged Emissions: 2015 – latest GAINS global scenario (Eclipse v6a, March 2019)

Source apportionment for cities (preliminary!)

All cities within the respective GAINS region (province/country) averaged Emissions: 2015 – latest GAINS global scenario (Eclipse v6a, March 2019)

From global to local II: High-resolution model for Delhi

- Study for Delhi with local partners
- Local high-resolution sectoral transfer coefficients for PPM: AERMOD dispersion model
- Fully functioning "classical" GAINS model for Delhi:

Validation of the dispersion calculations for Delhi 2015

Source apportionment of PM_{2.5} in Delhi 2015

Amann et al., Atmos Environ (2017)

Global to local III: Integrated city tool for Hanoi

Drivers

weblink

Under development!

F

ILASA

Socio-economic projection (2030 rel. to 2015)						Measures - Power sector		
	Bac Ninh,	Bac Ninh, Hung Yen		Noi	Region		Measures - Industry		
Population	0.3%		0.3%		0.3%				
GDP/capita	4.9%		4.8%		4.9%		Measures - Households	l	
Industry % of GDP	0.0%	0.0%			0.0%		Measures - Agriculture		
Transport	0.0%	0.0%		0.0%		0.0%			
							Measures - Road Transportation	l l	
							Manuary Manuard models and an	(

•

-

Measures - Power sector
Measures - Industry
Measures - Households
Measures - Agriculture
Measures - Road Transportation
Measures - Non-road mobile sources
Measures - Others

Measures

Hanoi 📩

10k

12k

 \equiv

Global to local III: Integrated city tool for Hanoi

weblink

Ambient PM2.5 Map Source apportionment

Hanoi 📩

10k

12.5k

 \equiv

7.5k

Under development!

T IIASA

Conclusions

- GAINS atmospheric calculations outside Europe: 0.5° + urban downscaling
- Global base case & urban reduction simulation at 0.1° for splitting source-receptor coefficients into urban and rural origin for low-level sources
- Allows for generic source attribution for >4,700 cities (Preliminary!)
 - Contribution from PPM to urban increment dominant
 - Urban low-level emissions account for less than1/3 of total PM_{2.5}
 - Local contribution does not seem dominant in most cities.
 - Not enough local information & resolution to model individual cities!
- For policy analysis in individual cities, higher resolution is needed
- Examples:
 - full GAINS version for Delhi
 - Hanoi integrated front-end tool

Big endavours (2 years+)!

