> SOURCE ATTRIBUTION OF BLACK CARBON FOR IMPROVED EMISSIONS AND MODELLING

Renske Timmermans, Richard Kranenburg, Astrid Manders, Antoon Visschedijk, Jeroen Kuenen, Kevin Hausmann, Dominik van Pinxteren, Sebastien Clemen, Martijn Schaap

for life

RATIONALE

Black carbon contributes to global warming and has adverse health effects

- > reduction in BC gives a win-win
- priority substance in NEC Guideline (NEC2016/2284/EU)
- \rightarrow Need for accurate emission and concentration estimates

BC EMISSIONS STILL VERY UNCERTAIN

BC EMISSIONS STILL VERY UNCERTAIN

SPATIAL ATTRIBUTION UNCERTAIN

OC (co-emitted with EC) from residential wood combustion versus Levoglucosan = tracer for wood combustion

levoglucosan(measured) vs OC-Woodburning (modeled)

: .

PROJECT ON IMPROVED BC EMISSIONS AND MODELLING FOR GERMANY

The goal of the project is to derive optimized BC emission data

VII Umwelt G

- with regard to area and sector
- through an iterative process in which modelled BC concentrations are contrasted to observations
- by tracing labelled emissions through the model

In addition to improved emissions, this will result in improved concentrations.

in cooperation with

innovation

TNO innovation for life

MODELLING APPROACH LOTOS-EUROS

- Labelling enables the production of scenarios in a very efficient way.
- https://topas.tno.nl for PM10 and PM2.5 (past 6 weeks)

PM2.5/PM10

PM2.5 SOURCE SECTOR CONTRIBUTIONS

Source contribution at: Veldhoven-Europalaan, run domain: NL; tracer: PM2.5 [ug/m3]

Main sector contributions

Urban background

o innovation for life

Scientific RWC emissions

Comparison for PMF combustion biomass

Model PM10 residential combustion biomass

versus

PMF PM10 contribution combustion biomass

Observations Sept '16 – Mar. 17 PMOst campaign Eastern Germany

Scientific RWC emissions

MODELLING PERFORMANCE – MELPITZ RURAL BACKGROUND STATION - FILTER

innovation for life

Base run

using actual temperature instead of standard temporal emission profiles for residential combustion

MODELLING PERFORMANCE – BERLIN TRAFFIC STATION - AETHALOMETER

7 x 7 km resolution model run Scientific RWC emissions

NO innovation for life

MODELLING PERFORMANCE – BERLIN TRAFFIC STATION - AETHALOMETER

NO innovation for life

MODELLING PERFORMANCE – BERLIN

http://www.innovation for life

FIRST EMISSION UPDATE GERMANY

Baseline:

- Officially reported BC emissions for Germany (GRETA gridding).
- Scientific RWC emission database (Denier van der Gon 2015) for other countries, CAMS + bottom-up for residential wood combustion including condensables

Emission adjustments based on review of reported BC emissions for Germany.

- Increase in black carbon emission from residential wood combustion
 - ~30% increase in PM emission factor (GRETA assumes very modern stoves)
 - Threefold increase in black carbon fraction (more representative for modern stoves and only solid PM)
- Reduction of black carbon emissions from tyre and brakewear (most tyre wear not optically active)

Total emissions have increased (not as high as scientific database, there is a clear shift in sector contribution

IMPACT OF EMISSION ADJUSTMENT

Annual mean concentration and relative sector contributions

baseline

adjusted

0.20 0.25 0.30

non-road transport

0.30

NO innovation for life

VALIDATION WITH OBSERVATIONS

CONCLUSION

- LOTOS-EUROS model successfully used with labelling/tagging to calculate black carbon distributions and main contributors (sectors and regions)
- > Comparisons with observations with source attribution prove very valuable
- Insight in model and emission accuracy and where improvements can be made

OUTLOOK

- > Look at seasonal and diurnal profiles of biases
- Bias as function of meteorological conditions (temperature), sector and regional contributions
- > Comparison to source speciated aethalometer data at stations in Berlin
- Comparison to source speciated observations from the 2017/2018 winter field campaign -- Eurodelta-Carb intercomparison exercise

TNO innovation for life

EFFECT OF USING SCIENTIFIC RWC DATABASE INCL. CONDENSABLES OC AT MELPITZ

Model performance SNMEL; run domain: D2; tracer: oct [ug/m3]

Daily measurements vs simulations

Model performance SNMEL; run domain: D2; tracer: oct [ug/m3]

Daily measurements vs simulations

heating+snow
Measurements

---- RWC+heating+snow • • Measurements

> THANK YOU FOR YOUR ATTENTION

Take a look: TNO.NL/TNO-INSIGHTS

NO innovation for life

Part of this work was sponsored by UBA (FKZ 3717 51 250 0)

Umwelt 🎲 Bundesamt