

Norwegian Meteorological Institute met.no

Using the EMEP intensive measurement periods to evaluate a new parameterization of coarse nitrate

Haldis Berge

TFMM workshop, Ispra, 19-20 November 2009

Outline

- Coarse nitrate formation
- Old parameterization
- New kinetic parameterization
 - Description of the method
 - Evaluation of model results
- New equilibrium parameterization
 - Description of the method
 - Evaluation of model results

Coarse nitrate formation on dust and sea-salt

• Coarse nitrate forms when nitric acid reacts with sea-salt and/or dust:

 $2 \text{ HNO}_3 + \text{CaCO}_3 \rightarrow \text{Ca}(\text{NO}_3)_2 + \text{CO}_2 + \text{H}_2\text{O} \quad (1)$ $\text{HNO}_3 + \text{NaCl} \rightarrow \text{NaNO}_3 + \text{HCl} \quad (2)$

• The most reactive parts in dust are calcite (Ca(CO₃)) and dolomite (CaMg(CO₃)₂)

Coarse nitrate in the model today

• Coarse nitrate in the EMEP model only depends on HNO_3 , with a reaction rate coefficient k_{RH}

 $k_{RH} = 1.0 \times 10^{-4}$ for RH>90%

 $k_{RH} = 5.0 \times 10^{-6}$ for RH < 90%

• The model run with this parameterization is later referred to as E_std

New kinetic parameterization

 Kinetic method: assumed total reaction in forward direction of reactions 1 and 2, with a reaction rate that depends on aerosol surface and the sticking coefficient γ of HNO₃

$$k = \left(\frac{d}{2D_g} + \frac{4}{\nu\gamma}\right)^{-1} A$$

The different model runs

- E_std: model run with old parameterization
- E_d: model run with reactions on dust only
 E_d_ca60
- E_ss: model run with reactions on sea-salt only
- E_d_ss: model run with reactions on both dust and sea-salt

Coarse nitrate in model results compared to measurements

Station	Obs	Bias (%)					Correlation					
ID	μ g(N) m $^{-3}$	E_std	E_ss	E_d	E_d_s	E_std	E_ss	E_d	E_d_s			
June 2006												
CH02	0.10	-60	-100	-97	-96	-0.28	-0.03	0.56	0.53			
GB36*	0.51	-71	-96	-100	-94	0.01	0.39	-0.18	0.39			
NL11*	0.03	67	-63	-98	-61	0.22	-0.15	0.32	-0.12			
FI17	0.10	-3	-92	-99	-92	0.35	0.66	0.00	0.66			
IT01	0.36	-64	-97	-94	-91	0.17	-0.06	0.36	0.22			
NO01	0.11	-54	-91	-100	-91	0.64	0.62	0.13	0.62			
DE44	0.12	-33	-96	-99	-96	0.17	0.56	-0.13	0.54			
ES17	0.20	-55	-95	-85	-79	0.16	-0.46	0.84	0.75			
			-									
January 2007												
CH02	0.29	-79	-97	-100	-98	0.39	0.52	0.30	0.53			
NL11*	0.08	-64	-89	-100	-89	0.11	0.06	0.13	0.06			
FI17	0.06	-27	-96	-100	-95	-0.03	0.05	0.07	0.05			
IT01	0.30	-30	-87	-99	-85	0.06	0.22	0.00	0.21			
NO01	0.002	-21	-74	-95	-74	0.22	0.33	0.14	0.33			
DE44	0.10	-50	-90	-100	-95	0.24	0.39	0.15	0.39			

- Temporal correlation improves
- There is a negative bias in the new parameterization

5% Ca²⁺ in coarse dust compared to measured (PM10-PM1) Ca²⁺, 2007 Na⁺ in coarse sea-salt [▼] compared to measured (PM10-PM25) Na+, 2007

- Can the low value of 5% Ca²⁺ in coarse dust compared with measurements explain the high negative bias?
- Underestimation of coarse sea-salt may be a reason for underestimating coarse nitrate formation

Coarse nitrate on dust, 2006

Montelibretti (IT01)

 Assuming more Ca²⁺ content in dust did not explain the negative bias in the dust parameterization Equilibrium method

- Assume that formation of coarse nitrate on sea-salt and dust reaches equilibrium within the 20-minute time step in the EMEP model
- Use the equilibrium module EQSAM to calculate the equilibrium
- First let the photochemistry work, then let fine aerosols reach equilibrium, before letting coarse aerosols reach equilibrium
- This model run is later referred to as E_eqsam

Station	Obs		Bias (%	b)	Correlation			
ID	μ g(N) m ⁻³	E_std	E_d_ss	E_eqsam	E_std	E_d_ss	E_eqsam	
			Jun	e 2006				
CH02	0.10	-60	-96	-90	-0.28	0.53	-0.20	
GB36*	0.51	-71	-96	-82	0.01	0.39	-0.02	
NL11*	0.03	67	-67	89	0.22	-0.12	-0.04	
FI17	0.10	-3	-88	-96	0.35	0.77	0.05	
IT01	0.36	-64	-91	-100	0.17	0.22	-0.20	
NO01	0.11	-54	-91	-91	0.64	0.62	0.20	
DE44	0.12	-33	-92	-92	0.17	0.54	0.41	
ES17	0.20	-55	-80	-95	0.16	0.75	0.60	
			Janua	ary 20 <mark>07</mark>				
CH02	0.29	-79	-98	-76	0.39	0.53	0.56	
NL11*	0.08	-64	-89	-12	0.11	0.06	0.30	
FI17	0.06	-27	-95	-27	-0.03	0.05	0.00	
IT01	0.30	-30	-85	-27	0.06	0.21	-0.05	
NO01	0.002	-21	-74	-37	0.22	0.33	0.41	
DE44	0.10	-50	-95	-30	0.24	0.39	0.33	

• The equilibrium method improves temporal correlation and the bias in winter

• The equilibrium method improves both correlation and bias at Melpitz (DE44)

Spatial correlation of coarse nitrate

- Good spatial correlation, especially in January
- Small improvement in spatial correlation indicates that the formation of coarse nitrate is mainly driven by HNO₃
- The spatial correlation of dust and sea-salt limits the spatial correlation of coarse nitrate

Summary

- Inclusion of coarse nitrate formation on dust and seasalt with the kinetic approach improves the temporal correlation but gives a high underestimation of coarse nitrate
 - Several sensitivity tests were performed, but neither of them could explain this high negative bias
 - Comparison with other model studies of coarse nitrate formation on dust and sea-alt reveals a rather small production of coarse nitrate in this study
- Inclusion of coarse nitrate formation on dust and seasalt assuming equilibrium improves the result in winter