Issue with using EMEP 0.10x0.10

- EMEP 0.5x0.5 uses SNAPs and EMEP 0.1x0.1 uses NFR. CHIMERE (for example) does not have currently parameters ready for NFR
 - The change from SNAP to NFR is not straightforward. Speciation, temporalization, emissions heights need to be created for NFR for some models. Difficult to use SNAP data for NFR:
 - SNAP10 corresponds NFR <u>K AgriLivestock</u> and <u>L AgriOther</u> (two sectors with different temporalization)
 - NFR B_Industry and A_PublicPower corresponds to SNAP 1, 3, 4.
 - May be interesting to create tools that could be used to automatically create the needed database in SNAP and NFR.
 - Perhaps CEIP could provide some information on speciation, temporalization per country, year, sector, etc...
- EMEP 0.1x0.1 data are a bit tedious to download: 1 file per polluant and sector. An automatic tool to automatically emissions may be interesting.

Speciation using NFR level 2 data

- CITEPA gathered information on speciation from literature on SNAP3/NAPFUEL speciation
- Possibility to use information on emissions totals from countries
 - A NFR level 2 speciation was estimated based on SNAP3/NAPFUEL totals for France
 - Possibility to create SNAP1 and NFR1 by coupling the NFR level 2 speciation with the the NFR level 2 totals
 reported by countries. Speciation could therefore change for each year and country. Better speciation could
 be obtained by using better speciation data.
 - Example for CHIMERE (TOL species) for SNAP level 1 (the same could easily be done for NFR level 1). Part of NMVOC emissions:

Snap	1	2	3	4	5	6	7	8	9	10
France 2000	0,6%	0,0%	1,6%	0,9%	2,4%	3,3%	2,2%	1,8%	2,8%	0,0%
France 2012	0,4%	0,0%	1,1%	0,6%	2,0%	2,6%	1,8%	1,7%	2,7%	0,0%
UK 2012	1,1%	0,0%	1,7%	0,2%	0,8%	1,4%	2,0%	1,2%	3,3%	0,1%
Spain 2012	1,0%	0,0%	0,3%	0,2%	0,5%	4,4%	1,7%	0,7%	0,0%	0,0%
Greece 2012	1,7%	0,0%	0,1%	4,4%	0,0%	0,2%	1,9%	1,1%	0,0%	0,0%
Poland 2012	1,9%	0,0%	0,5%	1,3%	1,8%	5,5%	2,4%	1,0%	0,0%	0,0%
Germany										
2012	1,8%	0,0%	0,5%	0,4%	1,3%	3,0%	1,8%	1,1%	0,0%	0,0%
Italy 2012	1,3%	0,0%	0,4%	2,0%	1,1%	2,8%	2,1%	2,0%	4,5%	0,0%

• A similar methodology could perhaps be applied for temporalization

Other issues

• Some information (for POPs and heavy metals) are present in emissions reported by countries (emission totals not gridded) but not in as used in models

Main Pollutants P	M	Heavy Metals	POP	Main Pollutants	РМ	Heavy Metals	POP
CO NH3 NMVOC NOx (as NO2) SOx (as SO2)	3C PM10 PM2.5 TSP	As As Cd Cr Cu Hg Ni Pb V	Aldrin benzo(a) benzo(b) benzo(k) Chlordan Chlordecone DDT \checkmark	CO NH3 NMVOC NOx (as NO2) SOx (as SO2)	PM10 PM2.5 PMcoarse	Cd Hg Pb	benzo(a) benzo(b) benzo(k) DIOX HCB Indeno

Reported

As used in models

- Heavy metals: gridded emissions only for Cd, Pb and Hg. Other metals such as As and Ni are also included in the directives and we do not have gridded emissions for them.
- POP and Heavy metals: Concerns on the precision of the inventory for modeling activities