

Activities of ESPREME

Jochen Theloke, IER, University of Stuttgart TFMM 8th Meeting, UBA, Dessau

Rainer Friedrich, Steffen Nitter, Peter Fantke, Ingo Huck, Heiko Pfeiffer, Stefan Reis, Oleg Travnikov, Jozef Pacyna, Elisabeth G. Pacyna, Damian Panasiuk,Janina Fudała, Ewa Strzelecka-Jastrząb, Stanisław Hławiczka et al.

The ESPREME Project Team

- University of Stuttgart, Institute of Energy Economics and the Rational Use of Energy (IER) co-ordinator
- Norwegian Institut of Air Research (NILU)
 - Institute of Ecology of Industrial Areas (IETU)
 - Swedish Environmental Research Institut (IVL)
- Institute of Occupational Medicine (IOM)
- **EMEP Meteorological Synthesizing Centre East (MSC-E)**
- Institute for Atmospheric Pollution (CNR-IIA)
- Czech Hydrometeorological Institute (CHMI)

Aim:

Provision of information, that can contribute to the development of a strategy for reducing the occurrence of heavy metals in the environment in Europe.

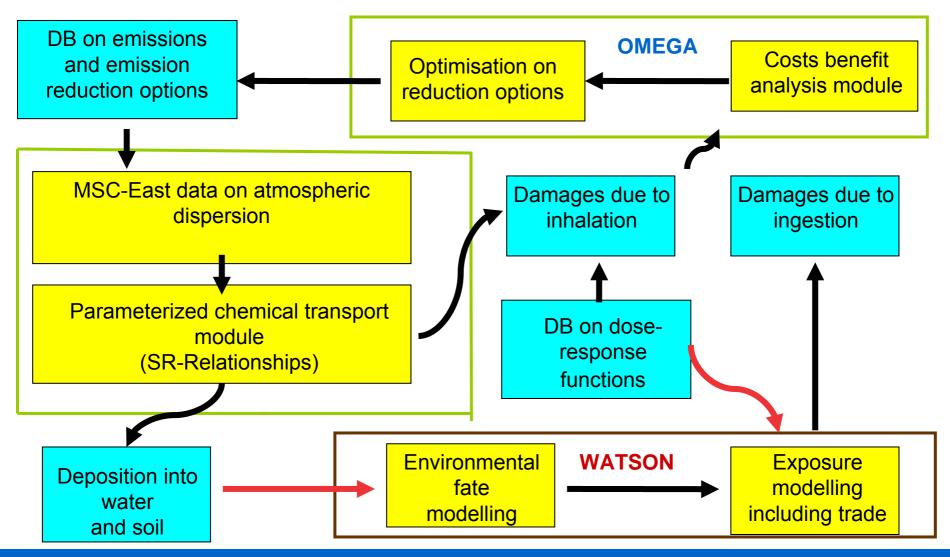
This strategy should be

- effective
- efficient
- Europe-wide

and should make use of the state-of-the-art in integrated assessment modelling.

Approach

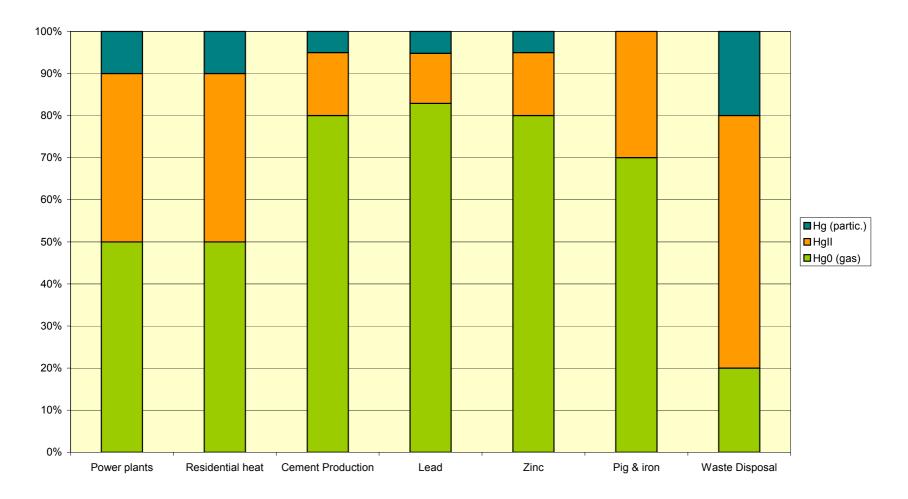
The approach consisted of the following steps:


- 1. Consolidate, improve and provide European wide emission data of heavy metals (Hg, Cd, Pb, Ni, As and Cr)
- 2. Collect systematic data on the possibilities to reduce emissions.
- 3. Improve models for the transport of HM in the atmosphere, soil and water and apply them to simulate the transport of HM in these media; modeling results were evaluated vs. measurement data.
- 4. Collect data on thresholds and information on exposure–response relationships.
- 5. Estimate the willingness-to-pay to avoid damage from HM exposure by transferring values from available contingent valuation studies.
- 6. Set up an integrated assessment model (IAM).
- 7. Carry out runs of the IAM to identify cost effectiveness strategies, i.e. bundles of measures that achieve compliance with thresholds and cost-benefit analyses to identify bundles of measures, where the difference between benefits and costs are maximised.

Universität Stuttgart Institute of Energy Economics and the Rational Use of Energy

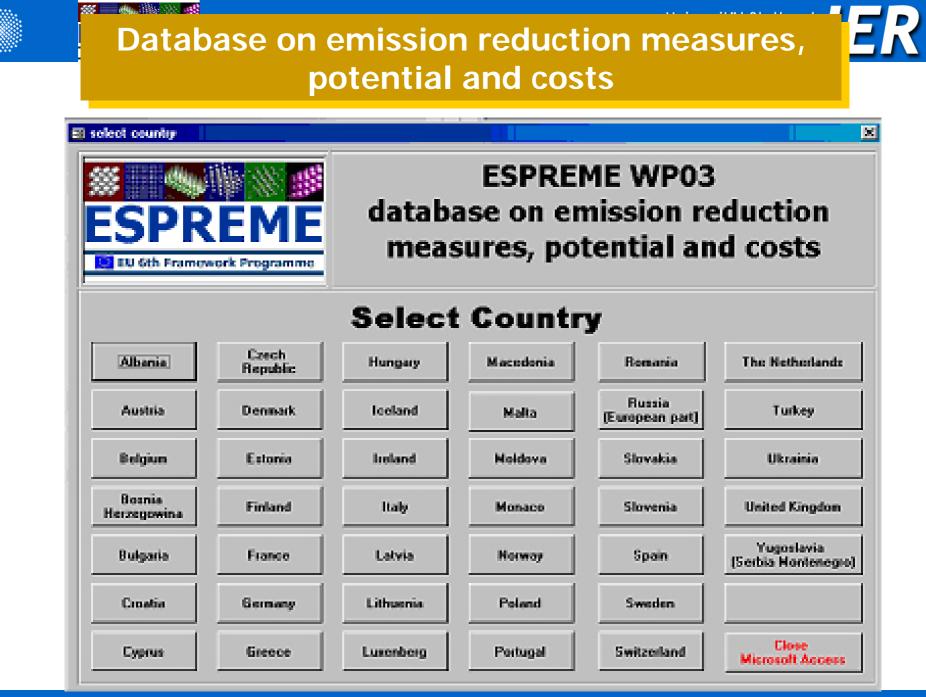
Dataflow of modelling framework

Total Hg Emissions from Anthropogenic Sources in Europe, 2000 (in Tons/Year)


	Coal Com	bustion	Oil	Cement	Non-ferro	us Metals	Iron & Steel	Caustic	Waste	Other		Information	
Country	Power Plants	Residential heat	Combustion	Production	Lead	Zinc	Production	Soda	Disposal	Sources	Total	Source 2000	
Albania	0.07									0.10	0.17	JP/EP	
Austria	0.10	0.57	0.10	0.13			0.10	0.03	0.07		1.10	EMEP 1/2002	
Belarus	0.02	0.32	0.01	0.01							0.36	National	
Belgium	1.06			0.13	0.06	0.25	0.06	0.44	0.06		2.06	EMEP 1/2002 (1), JP/EP	
Bosnia-Herzegovina	0.22										0.22	JP/EP	
Bulgaria	1.64	1.64	0.06	0.06	0.06	0.06	0.06	0.49		0.12	4.19	EMEP 1/2002	
Croatia										0.31	0.31	EMEP 1/2002 (1)	
Cyprus										0.10	0.10	JP/EP	
Czech Republic	1.71	1.71	0.02	0.05			0.07	0.28			3.84	EMEP 1/2002, JP/EP	
Denmark	0.60	0.17		0.17					0.85	0.26	2.05	EMEP 1/2002	
Estonia	0.40	0.10		0.02			0.03				0.55	National	
Finland	0.05	0.21		0.05		0.16	0.05	0.03		0.05	0.60	EMEP 1/2002, JP/EP	
France	2.06	0.14		3.44	0.69	1.79	1.37	0.70	2.61	2.20	15.00	EMEP 1/2002	
Germany	5.24	4.05	1.19	5.49		2.00	1.24	1.19	3.00		23.40	JP/EP	
Greece	0.73	0.63		1.56	0.10		0.20	0.03	0.20		3.45	JP/EP	
Hungary	1.00	1.11	0.10	0.30			0.10	0.20	1.04	0.36	4.21	National	
Iceland											0.00		
Ireland	0.20			0.12	0.11						0.43	JP/EP	
Italy	0.46	2.54		3.27	0.10	0.70	0.56	0.65	1.00	0.50	9.78	JP/EP	
Latvia	0.08			0.07							0.15	National	
Lithuania										0.25	0.25	EMEP 1/2002	
Luxemburg	0.14						0.13				0.27	EMEP 1/2002	
Monaco	0.04	0.04									0.08	National	
Netherlands	0.05	0.05		0.15			0.15	0.03	0.10		0.53	EMEP 1/2002 (1), JP/EP	
Norway		0.24		0.24			0.24		0.24		0.96	EMEP 1/2002, JP/EP	
Poland	10.20	12.84		0.10		0.10	0.90	0.10	0.57	0.79	25.60	National	
Portugal	0.17			0.88		0.10	0.00	0.03	0.01	0.1.0	1.08	JP/EP	
Republic of Moldova	0.06	0.07								0.05	0.18	EMEP 1/2002 (1), INTAS	
Romania	2.10	2.70		0.05			0.05		0.10		5.00	National	
Russian Federation	15.50	11.00		3.70	5.90		1.90	28.00	0.10		66.10	INTAS/ JP,EP	
Slovakia	1.09	1.09		0.27			0.27	0.11		1.62	4.45	EMEP 1/2002	
Slovenia	0.29						-	-		0.29	0.58	EMEP 1/2002	
Spain	5.39	4.35		5.60	0.42	2.49	1.04	0.61		3.10	23.00	EMEP 1/2002	
Sweden	0.06	0.06		0.00	02	0	0.06	0.04	0.25	0.07	0.54	EMEP 1/2002 (1)	
Switzerland	0.00	0.10		0.20			0.80	0.01	1.30	0.03	2.63	National	
TFYR of Macedonia	0.10	0.10		0.04			0.00	0.10		0.01	0.05	National	
Turkey				2.69			1.17			0.20	4.06	JP/EP	
Ukraine	5.70	1.71		0.85			1.69	6.26	0.08	0.20	16.29	INTAS	
United Kingdom	3.42	0.62		0.26	0.09	0.09	0.13	0.68	0.00	3.25	8.54	EMEP 1/2002	
Yugoslavia	3.52	0.66	0.21	0.28	0.00	0.00	0.12	0.40		1.60	7.09	JP/EP	
EUROPE	63.47	48.72	1.69	30.18	7.63	7.84	12.49	40.40	11.57	15.26	239.25	-	

(1) 1999 year

Emission profiles for different chemical forms of mercury and various source categories

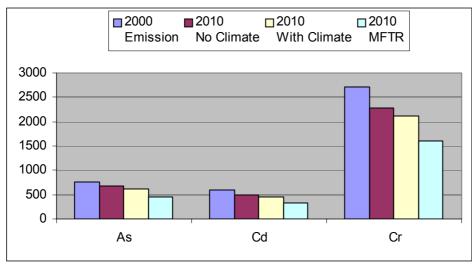


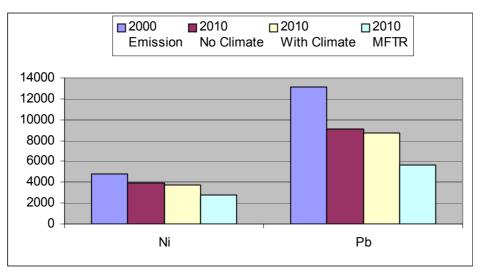
Emissions of As, Cd, Cr, Ni and Pb in Europe in the year 2000

Source	As		Cd		Cr		Ni		Pb	
Category	tons	%	tons	%	tons	%	tons	%	tons	%
1. Combustion										
- stationary	391	51	367	63	1 394	51	3 795	79	1 623	12
sources										
- mobile sources									6 772	52
2. Industrial	279	37	162	27	947	35	542	11	4 398	33
processes										
3. Other	93	12	61	10	370	14	460	10	364	3
sources										
TOTAL	763	100	590	100	2 711	100	4 797	100	13	100
									157	

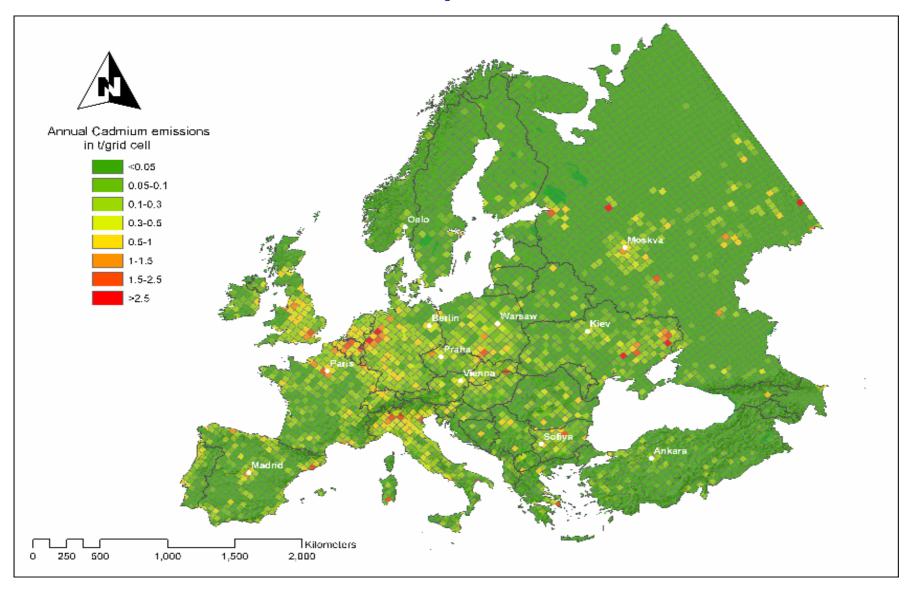
Universität Stuttaart

Database on emission reduction measures, potential and costs (2)

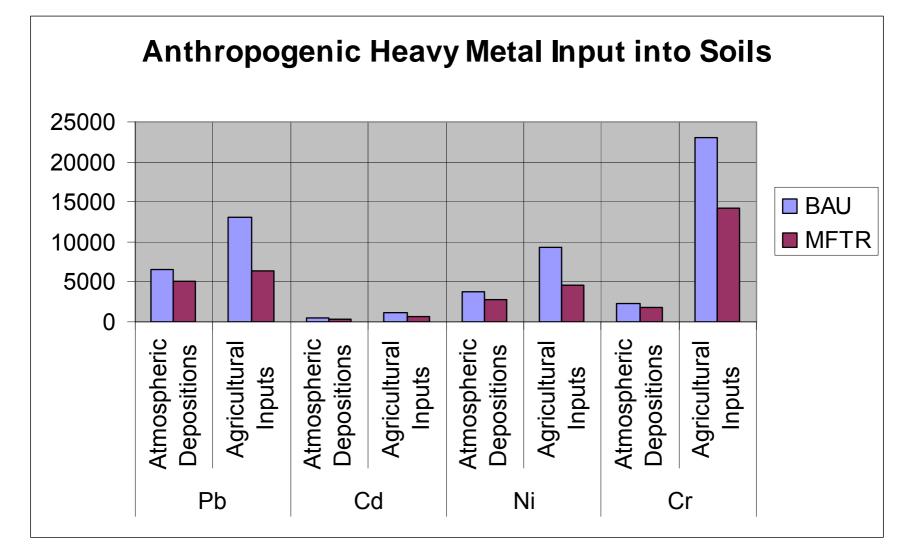

ESPREME WP03 - database on emission reduction measures, potential and costs Country: Ireland

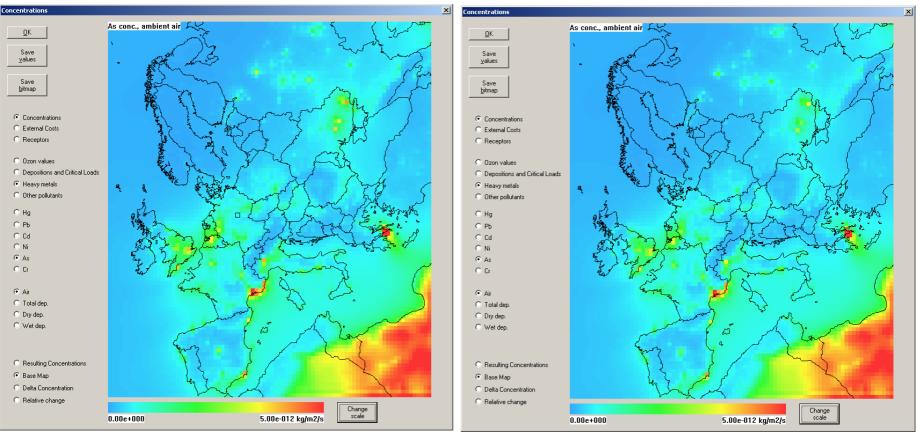

Main group of control methods	Primary measures (process oriented measures)	Code of main group	MP		
Main category method	Technical oriented measures	Code of main category method	MPt		
Control method within a main category method	HM content minimization	Code of control method within a main category	MPtc		
Option within a control method	fuel cleaning/washing	a control method	MPtc02		
Status of the control method	A - medium D - retrofitto B - state-of-the-art E - emergin C - optimized	Einal code of the method	MPtc02A		
Process	Hard coal combustion for power/heat generation	Code of measure-process	MPtc02A-1H/2H		
Option of process	Hard coal combustion in large and medium-sized combustion plants	Final code of the method- process	MPtc02A-1H		
The method-process investment	costs (Euro/MWh)	The method implement degree [%]	in base year 0 %		
The method-process operating c	osts 0,03 (Euro/MWh)	The method implement degree (%)	in 2010 0 %		
References (co	sts) ESPREME,2004				
Base year 200	% of Hg emission reduction	25 % Hg emission factors	s - UNABATED 0,00035 [kg Hg/SAI]		
	% of Cd emission reduction	40 % Cd emission factor	s - UNABATED 0,00016 [kg Cd/SAI]		
	% of Cr emission reduction	40 % Cr emission factor	s - UNABATED 0,0036 [kg Cr/SAI]		
	% of Ni emission reduction	40 % Ni emission factor	s - UNABATED 0,00707 [kg Ni/SAI]		
	% of As emission reduction	40 % As emission factor	s - UNABATED 0,00507 [kg As/SAI]		
	% of Pb emission reduction	60 % Pb emission factors	s - UNABATED 0,016 [kg Pb/SAI]		
References (% reduct	ion) Pavlish,1999	Specific activit	y indicator SAI MWhe		

The 2010 emission scenarios for As, Cd, Cr, Ni and Pb in Europe (in tonnes)

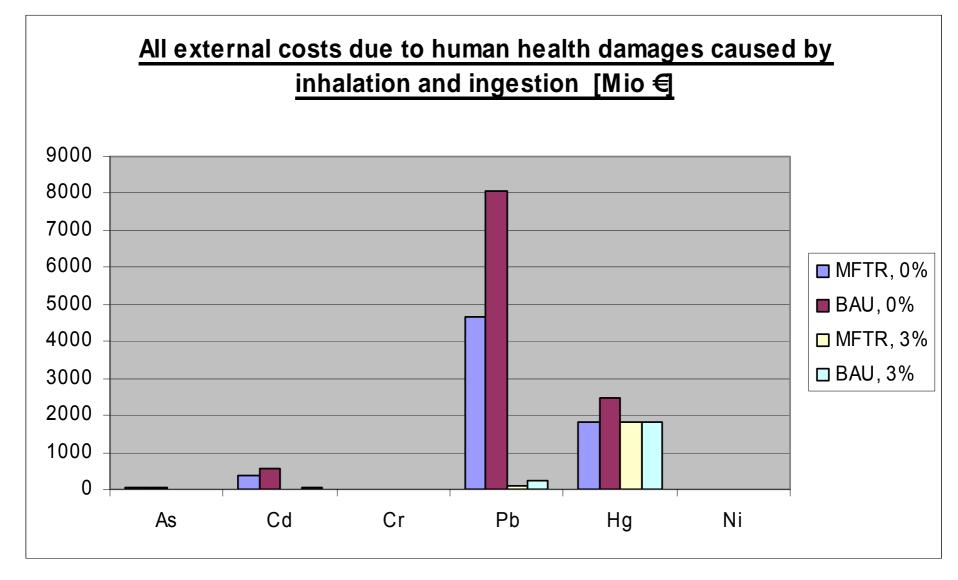


Universität Stuttgart Institute of Energy Economics and the Rational Use of Energy


Cd Emissions – Spatial Distribution


art **IER**

Comparison of agricultural and atmospheric input into soils


Average annual As concentration <u>BAU</u> **MFTR**

Cell (100,60): 0,627 ng/m3

Cell (100,60): 0,576 ng/m3

Conclusions (1)

- Further progress has been made in assessing sources and emissions of HMs to the atmosphere at a country and regional (European) level
- At least 3 European wide emission inventories have been presented by groups of emission experts for the reference year 2000: ESPREME (for HMs), TNO (HMs and POPs), and MSC-E (HMs and POPs)
- Emission estimates prepared by expert groups are higher than the estimates provided by countries (so-called official estimates)
- The EMEP modellers are recommended to use the research based emission inventories for HMs e.g. ESPREME in their estimates of concentrations, deposition, and critical load until more complete and accurate official data from various countries are available.
- National emission experts are recommended to analyze the research based emission inventories and contribute to closing eventual gaps between the official and research based data.

Conclusions (2)

- It was developed a tool to carry out integrate assessment for heavy metals and it is available, however high uncertainties at all steps.
- Hg, Pb and Cd cause higher impacts than As, Cr VI and Ni.
- External costs per kg range from several €(Ni, CrVI), ca 100 € (As), several hundred €(Pb, Cd) to several 1000 €(Hg) (with zero discounting).
- Generally damage due to ingestion is higher than damage due to inhalation; however it occurs farer in the future, thus issue of sustainability versus current welfare.
- Agricultural activities cause the highest (long term) human health damage for Cr, Ni, Pb, Cd and possess the highest reduction potential.
- Combustion of fuels is still the main source of ESPREME heavy metals, except for Pb (gasoline combustion)
- More extensive introduction of renewable energy sources may result in reducing the coal combustion and then heavy metal emissions

Universität Stuttgart Institute of Energy Economics and the Rational Use of Energy

Conclusions (3)

- Cement production, iron & steel manufacturing, and non-ferrous metal production, are important sources of heavy metal emissions.
- Waste disposal is underestimated as a source of heavy metal releases to the atmosphere.
- More focus should be done on accurate assessment of Hg emissions from contaminated sites (re-emission) and selected natural sources (geologically bound Hg in rocks).
- For coal combustion and industrial processes, an improvement of implementation and of efficiency of dust filters may be efficient – also PM 10 strategy.
- Mercury: further implementation of FGD.
- For household heating, switch from coal and oil to natural gas or renewables or to central heating (CHP) also climate strategy.
- For lead should be explore possibilities to further reduce lead in "lead-free" gasoline and use biofuels.
- The contribution of annual emissions to critical load exceedance is low. However critical loads will be frequently exceeded in the far future, if emissions continue for very long time spans.

Thank you for your attention

Contact: Rainer Friedrich <u>rf@ier.uni-stuttgart.de</u> Jochen Theloke <u>jt@ier.uni-stuttgart.de</u>

Further information: http://espreme.ier.uni-stuttgart.de